
Universität Osnabrück
Fachbereich Humanwissenschaften
Institute of Cognitive Science

Master’s thesis

Data-Driven Embedding of Educational Resources in a Vector
Space with Interpretable Dimensions for Explainable

Recommendation

Christoph Stenkamp
955004

Master’s Program Cognitive Science
April 2017 - April 2022

First supervisor: Dr. Tobias Thelen
Institute of Cognitive Science
University of Osnabrück

Second supervisor: Johannes Schrumpf, M.Sc.
Institute of Cognitive Science
University of Osnabrück

3

Declaration of Authorship

I hereby certify that the work presented here is, to the best of my knowledge and belief,
original and the result of my own investigations, except as acknowledged, and has not
been submitted, either in part or whole, for a degree at this or any other university.

city, date signature

Abstract

The number of available educational resources keeps rising just as the liberty for stu-
dents to create a custom curriculum, making recommendation in this sector ever more
critical. There is the need for a methodology to structure these resources unsupervisedly
to allow for explainable recommendations, where users can explicitly demand features
such as the degree how mathematical a course should be. Conceptual Spaces allow to
embed resources into a vector space whose quality dimensions correspond to salient se-
mantic features, but generating them reliably is an open question. This thesis replicates
a method to create these spaces data-driven from their descriptions and applies it to a
given dataset of that domain to explore its applicability. Our preliminary results show
that human categories such as the faculty a course belongs to are among the detected
salient directions. Further qualitative analysis also indicates that the embeddings cap-
ture essential features that can be used in interpretable classification and explainable
recommendation. Additionally, a scalable and modular architecture for the algorithm is
created. It is shown that it can be applied to diverse variations of dataset and algorithm
components. A workflow is implemented and described to run the algorithm efficiently
on compute clusters. The full implementation is open-sourced to make future research
on related problems more accessible.

Contents

1. Introduction 1
1.1. Reading Instructions . 1
1.2. Motivation . 2
1.3. Research Questions and Thesis Goals . 6

2. Background 8
2.1. Replication and Software Quality . 8
2.2. SIDDATA and Educational Resources . 10
2.3. Conceptual Spaces . 11
2.4. Other Related Work . 18
2.5. Relevant Algorithms and Techniques . 20

3. Methods 26
3.1. Datasets . 26
3.2. Algorithm . 34
3.3. Architecture . 47
3.4. Evaluation Metrics . 53

4. Results 56
4.1. Replicating results for the placetypes-dataset 56
4.2. Dataset differences . 58
4.3. Results for the Siddata-dataset . 59
4.4. Optimal Parameters . 64

5. Discussion and Conclusion 69
5.1. Interpretation and Discussion of results . 69
5.2. General Algorithm . 81
5.3. Architecture . 86
5.4. Future Work . 87
5.5. Conclusion . 89

Glossary 91
List of Definitions . 91
Custom Terms used in this thesis . 92
List of Acronyms . 93

Appendix 95

A. Code Use-Cases in Praxis 95
A.1. Docker . 95
A.2. Using Click . 95
A.3. Using Snakemake . 98
A.4. In Notebooks . 100

B. Implementation Details 102
B.1. Algorithm Implementation Details . 102
B.2. Other Algorithms . 104
B.3. Configurations to run [1, 2] . 105

C. Further Plots and Tables 106
C.1. t-SNE plots for the data from [1] . 106
C.2. Dataset samples . 107
C.3. Results for Classifiers on placetypes . 108
C.4. Comparison of different Cluster-Center-Algorithms 109
C.5. F1-scores per faculty . 109
C.6. Sample Classification . 110
C.7. Hyperparameter search . 111

D. Algorithm as Pseudo-Code 112

Bibliography 113

List of Figures

1.1. The Movie Tuner Interface from [16]. 5

2.1. Hierarchy of aspects to consider for sustainable data analysis. 9
2.2. Inner form of a Conceptual Space for an apple. 13

3.1. Distribution of metadata in the raw Siddata-dataset. 30
3.2. Distribution of description-lengths of the Siddata-dataset. 32
3.3. Distribution of faculties for those courses at University of Osnabrück. 32
3.4. Distribution of unique words per entity for the placetypes dataset. 34
3.5. Dependency-graph of the implementation. 37

4.1. Distribution of texts per candidate. 59
4.2. 2D Visualization of the Course-dissimilarity matrix, generated with t-SNE. . . . 60
4.3. A possible Hyperplane on a 3-Dimensional Embedding. 62
4.4. Resulting DTs with only a single decision for each of the faculties. 68

5.1. 3D-Plot with an SVM for the term mathematik. 78

B.1. Visual representation of the hyperplane of an SVM splitting a dataset. 103

C.1. 2D visualization of the placetypes-dissimilarity-matrix. 106
C.2. 2D visualization of the movies-dissimilarity-matrix. 107
C.3. Sample classification of a level-2 decision tree. 110

List of Tables

2.1. Link between Conceptual Spaces, the RCC and Ontologial Relations. 16

3.1. Sizes of the text-corpora of the Siddata-dataset and those of [1]. 27
3.2. Words that exceed various df thresholds for three datasets. 27
3.3. All datasets used by any of [1–3]. 28
3.4. Metadata of the Siddata-dataset. 31

4.1. F1-scores of classifiers for placetype-taxonomies of [1–3] and this work. 57
4.2. F1-scores of decision trees predicting GeoNames- and Foursquare-labels 58
4.3. Distributions of some interim algorithm results. 59
4.4. Robust scores for classifying all faculties at once. 61
4.5. Robust accuracies per faculty of a well-performing configuration. 62
4.6. Duplicates per combination of dimensionality and discretisation-categories. . . . 63
4.7. Top 3 directions to detect the respective faculty from the data. 64
4.8. Exemplary clusters found in the Siddata-dataset. 65
4.9. Overlap of different scoring methods in percent. 66
4.10. Decision tree accuracies for different parameter-combinations. 67

5.1. Sample courses falling onto the same embedding after discretisation. 76
5.2. Number of appealing phrases found among the directions. 77
5.3. Highest ranking courses per feature that best predicts the faculty. 79

B.1. Different values of calculating Cohen’s Kappa score. 104

C.1. Sample duplicates in the Siddata-dataset. 107
C.2. F1-scores of classifiers for placetype-taxonomies of [1–3] and this work (long). . 108
C.3. Highest-ranking descriptions per dimension for different algorithms. 109
C.4. Robust F1-scores per faculty of a well-performing configuration. 109
C.5. Amount of candidates extracted for different parameter-combinations. 111

1

1. Introduction

In this thesis, we want to generate a conceptual space for the domain of university courses
automatically in a data-driven way from their descriptions.

1.1. Reading Instructions

Document Structure After these reading instructions, chapter one continues the In-
troduction by stating why the topic of this thesis is important before defining the exact
goals that shall be achieved. The second chapter then discusses some relevant back-
ground. This includes information about the SIDDATA-project, aspects to consider for
software replication and quality, the idea of conceptual spaces in general, and a short
introduction to the base algorithm as well as some important concepts and techniques
required for it. The Methods then goes into detail about the used dataset as well as the
implemented algorithm and architecture, followed by information on the workflow used
to generate results and the metrics to analyse them. The fourth chapter then reports
the generated results, first comparing those for a dataset from the literature to demon-
strate technical correctness, followed by quantitative and qualitative results as well as
optimal hyperparameters for the main dataset. These are interpreted and discussed in
the final chapter before they are put into the context of the aims of this thesis. This is
followed by future research directions before everything is wrapped up in the Conclusion.

Digital Version This thesis is compiled both as a two-page printable version and as a
highly hyperlinked version recommended when reading the document digitally. In the
latter, all links are colored, all glossary entries and abbreviations are linked, and it is
possible to jump forward and back for sections, citations and references. After jumping to
a referenced figure from elsewhere, it is possible to jump back (on supported Readers) by
clicking the arrow in its caption. In cases where e. g. evaluation metrics are established in
another chapter than where they are used, additional hyperlinks allow jumping forward
and backward. Both versions of this thesis can be downloaded from its repository.1

Unfortunately, both this thesis’s printed and PDF versions do not allow for interactive
elements, making three-dimensional plots hard to understand. Because of that, where
appropriate only 2D versions are printed together with a reference to an online 3D version.
It is highly recommended to follow these links, as they contain interactive plots that
can be twisted and turned to truly explore their dimensions and show much additional
information that cannot be statically shown, such as detailed information about the
respective entities of a scatterplot on mouse-over.

Regarding Terminology This thesis uses the “we” as Pluralis Auctoris, signifying ob-
jectivity in science. This does not mean that anyone but the author of this thesis contrib-
uted to it unless explicitly stated otherwise. Many abbreviations, symbols, and technical

1https://github.com/cstenkamp/MastersThesisText/. Direct link to compiled documents:
https://nightly.link/cstenkamp/MastersThesisText/workflows/create_pdf_artifact/master/
Thesis.zip

https://github.com/cstenkamp/MastersThesisText/
https://nightly.link/cstenkamp/MastersThesisText/workflows/create_pdf_artifact/master/Thesis.zip
https://nightly.link/cstenkamp/MastersThesisText/workflows/create_pdf_artifact/master/Thesis.zip

1. Introduction 2

terms will be used throughout the text. Those that cannot be expected to be known
by the reader will be clearly defined - either in the section about Relevant Algorithms
and Techniques or the Conclusion at the end of this thesis. The glossary discriminates
between clearly defined Definitions and Custom Terms, where concepts often referred to
in this text are comprehensively explained without any claim to their true definition.

1.2. Motivation

1.2.1. Course Recommendation

This thesis explores a novel method to generate explainable recommendations for univer-
sity courses and other educational resources. The results will eventually be incorporated
into the Siddata-platform, helping students to find courses that fit their interests.

Overwhelming amounts of resources

The university landscape has changed drastically in recent years. In 1999, the Bologna
declaration was signed by the 29 (now 45) countries of the European Higher Education
Area, reforming their education systems to allow for international compatibility. While
before 1999 there were between 70 and 180 different elementary studies in Germany
[4], that number had risen to 2554 in 2003,2 had become more than 5000 in 2008 and
currently (winter semester 2020/2021) peaks at 9168 unique courses of study.3 The
number of subjects in total has almost doubled in the past thirteen years, from 11 265 in
2007 to 20 359 in 2020.3 According to the German Centrum für Hochschulentwicklung,
nowadays only 18.7% of degrees are classical, i. e. tailored to a specific subject such as
Physics, the rest fall unter the categories hybrid, interdisciplinary or topic-focused.4

Where before there was a rigid schedule of mandatory courses, modern courses of studies
are becoming increasingly modular, allowing students to draw up individual educational
plans composed of a wide selection of courses.5 Due to globalisation and the Introduction
of the European Credit Transfer System, the selection of courses for this may span any
course at any European university.

Finally, thanks to increasing digitalization and especially boosted in recent years by the
COVID-19-Pandemic, the number of publicly available OERs has skyrocketed. For ex-
ample, the number of MOOCs available on the e-learning platform Udemy6 has increased
from 20 000 in 2015 to more than 157 000 in January of 2021.7

Academics nowadays must engage with a multitude of interconnected, digital and open
practices and technologies [5]. High-quality OERs become more and more widespread

2https://www.che.de/download/im_blickpunkt_ausdifferenzierung_studiengaenge-pdf/
?wpdmdl=10620&refresh=624af74f6f7921649080143 (accessed at 14th March 2022)

3 https://www.hrk.de/fileadmin/redaktion/hrk/02-Dokumente/02-03-Studium/02-03-01-Stud
ium-Studienreform/HRK_Statistik_BA_MA_UEbrige_WiSe_2020_21_finale.pdf, page 10 (accessed at
14th March 2022)

4https://www.che.de/wp-content/uploads/upload/Im_Blickpunkt_Die_Vielfalt_der_
Studiengaenge_2017.pdf (accessed at 14th March 2022)

5https://www.pedocs.de/volltexte/2008/285/pdf/heft98.pdf (accessed at 14th March 2022)
6https://www.udemy.com/
7https://www.classcentral.com/report/udemy-by-the-numbers/ (accessed at 15th March 2022)

https://www.che.de/download/im_blickpunkt_ausdifferenzierung_studiengaenge-pdf/?wpdmdl=10620&refresh=624af74f6f7921649080143
https://www.che.de/download/im_blickpunkt_ausdifferenzierung_studiengaenge-pdf/?wpdmdl=10620&refresh=624af74f6f7921649080143
https://www.hrk.de/fileadmin/redaktion/hrk/02-Dokumente/02-03-Studium/02-03-01-Studium-Studienreform/HRK_Statistik_BA_MA_UEbrige_WiSe_2020_21_finale.pdf
h
t
t
p
s
:
/
/
w
w
w
.
h
r
k
.
d
e
/
f
i
l
e
a
d
m
i
n
/
r
e
d
a
k
t
i
o
n
/
h
r
k
/
0
2
-
D
o
k
u
m
e
n
t
e
/
0
2
-
0
3
-
S
t
u
d
i
u
m
/
0
2
-
0
3
-
0
1
-
S
t
u
d
https://www.hrk.de/fileadmin/redaktion/hrk/02-Dokumente/02-03-Studium/02-03-01-Studium-Studienreform/HRK_Statistik_BA_MA_UEbrige_WiSe_2020_21_finale.pdf
i
u
m
-
S
t
u
d
i
e
n
r
e
f
o
r
m
/
H
R
K
_
S
t
a
t
i
s
t
i
k
_
B
A
_
M
A
_
U
E
b
r
i
g
e
_
W
i
S
e
_
2
0
2
0
_
2
1
_
f
i
n
a
l
e
.
p
d
f
https://www.che.de/wp-content/uploads/upload/Im_Blickpunkt_Die_Vielfalt_der_Studiengaenge_2017.pdf
https://www.che.de/wp-content/uploads/upload/Im_Blickpunkt_Die_Vielfalt_der_Studiengaenge_2017.pdf
https://www.pedocs.de/volltexte/2008/285/pdf/heft98.pdf
https://www.udemy.com/
https://www.classcentral.com/report/udemy-by-the-numbers/

3 1.2. Motivation

and “may ultimately be the genuine equalizer for education and for empowering social
inclusion in a pluralistic, multicultural, and imperfect world” [6, p. 2]. All these trends
fundamentally change the landscape of higher education, leaving students with over-
whelming quantities of high-quality educational resources available. As, however, the
time at the hand of the students is now as limited as before, the choice of the right
resources in this ocean of information becomes increasingly problematic. Locating, re-
trieving and differentiating available resources becomes more and more challenging [5].

The Future Skills Report8 on the future of learning and higher education [7] suggests
that this trend will continue: According to the study, future academic education will
look fundamentally different from today, in that it will likely become increasingly multi-
institutional with students individually having their own personalized, flexible curriculum
selected from a vast set of resources, compared to which the currently available study
programmes are as rigid as they have ever been [7].

Explainable Recommendation

The Siddata-platform already contains a tool that generates recommendations based on
academic interests specified by the user [8]. The novel idea explored here, however, shall
fall under the realm of Explainable Artificial Intelligence and work interactively,
with the user in the loop. The use case considered for this thesis is the following: A
system should be found that provides well-founded recommendations for resources, based
on input and feedback by the user. A specific sample interaction that shall be made
possible9 is a user requesting

»A course like Codierungstheorie und Kryptographie, but with less maths.«

To be able to work with such requests, the system would need some sort of feature
directions: It must recognize math as a feature that any course may have and it must be
able to rank all courses according to how much the feature math applies to each of them.

For more than twenty years, the default approach for recommendation has been that of
Collaborative Filtering, summarised in the well-known phrase “Customers who bought
items in your Shopping cart also bought: . . . ” [9]. Traditionally, this algorithm represents
every customer as a vector, whose components are the number of times this customer
has bought an item for all items of the store. To suggest new products to the user, items
from the vectors of customers whose purchase history is similar to this user, calculated,
for example, by the cosine distance, are suggested [10]. Because this is computationally
very expensive, there are several alternatives, for example, algorithms that cluster users
based on their similarity to other users before matching, or search-based algorithms.
Even Amazon’s recommendation system, one of the most world-defining algorithms in
the world, uses the same base algorithm, coined “item-to-item collaborative filtering”.
It only differs from the traditional techniques in that it builds a similarity matrix based
on the cosine distance for items instead of customers. Developed in 1997, this algorithm
is not only still in use at Amazon today, but has also been adopted by Youtube and
Netflix, amongst many others [11]. Many improvements in efficiency, distance calculation

8www.nextskills.org
9. . . and also happens to be the exact request the author of this thesis had some time ago

www.nextskills.org

1. Introduction 4

techniques or time-dependency have been added since then, and the algorithm is likely
more optimized than most others. Yet, the fact that it is a simple similarity-based
reasoning technique has remained ever since. As will be explained in more detail in
Section 2.3.2, both in terms of classification algorithms and classic logical reasoning, the
technique to classify a sample with the class of its most similar neighbors (k-Nearest-
Neighbors) is considered one of the most basic techniques.

On a different note, feature directions are not unknown in the field of Computational Lin-
guistics. As famously demonstrated by Mikolov et al. [12] in their 2013 paper “Linguistic
Regularities in Continuous Space Word Representations”, modern neural language mod-
els that represent words as high-dimensional continuous-space vectors exhibit astonishing
semantic regularities. Not only does the usage of such embeddings boost the performance
of many classical NLP tasks [13–15], but there is also strong evidence that VSMs capture
the meaning of words on the basis of the distributional hypothesis. This best shows in
the famous example that links simple vector arithmetic to word semantics:10

vec(king)− vec(man) + vec(woman) ≈ vec(queen)

vec(planet) + vec(water) ≈ vec(earth) (1.1)

vec(house) + vec(movie) ≈ vec(cinema)

This can be considered semantic directions and would seem to allow the example stated
at the start of this section. However Word2Vec is not suited to allow data-driven ex-
plainable recommendation as demanded for the use-case of this thesis. This is because in
these embeddings, there are no meaningful unit vectors. There is no obvious direction
designating a gender in this space, but instead man is one of millions of vectors in this
space, its direction obfuscated throughout all of its vector components, and the actual
direction solely depends on the initial random distribution.

Intuitively, a vector-space that allows for the kind of explainable recommendation we
are looking for would need to be specified such that there are a few most basic bare
properties of all entities of the respective domain. These properties would correspond to
linearly independent unit vectors, which are the dimensions spanning the vector space:
human-interpretable feature directions.

This would allow to rank objects according to how much they apply to each of a few
basic features, allowing a wide variety of tasks, such as interpretable rule-based classifiers,
search engines working with gradual and ill-defined features (e. g. popular movies), or
critique-based recommender systems with the user in the loop [2]. Most importantly,
such a ranking could be used to build up a structured knowledge base for the domain.

In our search of literature with related goals, the approach of [16] stood out: In their
paper, they create a structured knowledge base for the domain of movies and provide
an interface that allows a user to select a movie based on a set of clear-defined semantic
features. This interface is reprinted in Figure 1.1.

While the result of their algorithm aligns very much with the desired goal of this work,
their implementation relies on supervised learning that requires a hand-labelled dataset.

10Latter two examples adapted from https://devmount.github.io/GermanWordEmbeddings/ (ac-
cessed at 14th March 2022)

https://devmount.github.io/GermanWordEmbeddings/

5 1.2. Motivation

Figure 1.1.: The Movie Tuner Interface from Vig et al. [16]. Figure reprinted from [17,
Fig.3] (permission for non-commercial use granted).

1.2.2. The algorithm of Derrac & Schockaert [1]
To summarise, the kind of recommendation aimed for here would require a structured
knowledge base that can be created from any domain in a data-driven way. This know-
ledge base can be represented as a vector space of human-interpretable, linearly inde-
pendent components. A Euclidean distance metric for the space would ease human
interpretation.

Famously, the idea of Conceptual Spaces fulfills these criteria. Introduced by Peter
Gärdenfos in his 2000 book Conceptual Spaces: The Geometry of Thought [18] as a bridge
between symbolic and subsymbolic processing, conceptual spaces represent knowledge
in a geometric structure consisting of various quality dimensions. While well-known
primarily as a theoretical model, an algorithm to automatically generate such spaces in
a data-driven way was proposed by Derrac & Schockaert [1] in 2015.

Their primary motivation is the following: Classical symbolistic AI relying on semantic
knowledge bases can provide intuitive explanations for its decisions, but automatic cre-
ation of such has thus far been unsuccessful. Inspired by the way humans deal with
incomplete knowledge, they draw a connection between commonsense reasoning patterns
and the relation of concepts and entities in a conceptual space, claiming that qualitative
spatial relations in the latter correspond to the semantic relations required for reasoning
that help to fill gaps in these knowledge bases. In doing so, they create multiple classifiers
that provide intuitive explanations for each decision.

1. Introduction 6

Given the widely accepted assumption that, algorithmically, recommendation is nothing
beyond classification [9, 10, 19], Derrac & Schockaert’s [1] algorithm seems the perfect
base to allow for explainable recommendation as required here if it works reasonably well
for the given domain.

Precise study of the pertinent literature has shown that there is a small but active
community publishing improvements to this algorithm. However, most of these follow-
up works include one of the authors of the primary paper, Steven Schockaert, as co-
author [2, 3], indicating a small impact beyond this community. Furthermore, most of
the considered literature use manually created datasets collected from multiple human
reviews or tags, and given that the algorithm relies on the fact that relevant words occur
more often in the text corpus, there is reason to assume that it may struggle when applied
to the corpus given in this thesis. For these reasons, it seemed reasonable to thoroughly
test the domain transfer of the algorithm.

Unfortunately, the available open-source implementations that were found11 proved un-
documented and obscure,12 which is why it was decided that a complete re-implementation
is the better idea and also less work. This also resulted in a new goal, namely, to create
a reliable architecture for the algorithm that adheres to modern standards of software
quality, as specified in ISO/IEC 9126 and its replacement ISO/IEC 25010:2011,
hopint to make future research just like this one - where the validity of the algorithm
and its ability to transfer to new domains is tested - easier than it was for the author of
this thesis.

1.3. Research Questions and Thesis Goals

In summary, the primary motivation for this thesis is to test if the methodology of Derrac
& Schockaert [1] is applicable to the domain of educational resources to find regularities
in the data and allow for explainable recommendation of these.

The methodology relies on many modular components with no obvious reason to choose
any hyperparameter or component over another, resulting in a combinatorial explosion
of runs, each with a significant runtime. Throughout the development of the respective
code, the importance of a solid software-foundation became clear, leading to a shift
in focus away from quickly generating results towards the methodology for a scalable,
adaptable and qualitative architecture that may serve as foundation to answer many
related research questions in the future. Among others, this includes the application of
the algorithm to compute clusters such as the IKW Grid Engine. The domain transfer
to educational resources shall, however, still serve as a prototypical application for which
answers will be generated.

So, this thesis shall not only replicate the results of [1] and transfer their algorithm to a
domain with practical benefits, but also deliver qualitative software for future research.

11[3]: https://github.com/rana-alshaikh/Hierarchical_Linear_Disentanglement
[2]: https://github.com/ThomasAger/Autoencoder-Explanations (accessed at 24th January 2022)

12Relying for example on 70 unnamed command-line arguments: https://github.com/ThomasAger/
Autoencoder-Explanations/blob/master/src/_archive/lr_pipeline.py#L1211-L1283 (accessed at
24th January 2022)

https://github.com/rana-alshaikh/Hierarchical_Linear_Disentanglement
https://github.com/ThomasAger/Autoencoder-Explanations
https://github.com/ThomasAger/Autoencoder-Explanations/blob/master/src/_archive/lr_pipeline.py#L1211-L1283
https://github.com/ThomasAger/Autoencoder-Explanations/blob/master/src/_archive/lr_pipeline.py#L1211-L1283

7 1.3. Research Questions and Thesis Goals

To make this even easier, there will be a strong textual focus on the architecture as well,
in the hope of allowing other scientists to work with this code-base. To show that the
implementation works, it will be also applied to an original dataset of [1] and the results
will be compared.

Clearly defined, the two stated goals of this thesis are thus:

1. Implement and describe a qualitative, scalable and adaptable software architecture
for the replicated algorithm that can be used to easily apply it to new domains.

2. Apply the methodology to the domain of educational resources to verify if the
algorithm works and is useful to find regularities in it, allowing for explainable
recommendation. In terms of original contributions, this includes finding differences
in the structure of the given datasets and, where appropriate, providing additions
to the algorithm such that it works not only on specifically curated datasets.

1.3.1. Success conditions

Exact evaluation metrics will be explained in detail later, but let us quickly define a few
conditions that indicate successful execution of these goals.

Regarding the architecture

A successful architecture is given if

• It successfully runs on the compute grid, indicating scalability and modularity.
• The results of [1] and its follow-up works [2, 3] can be replicated for at least one of

their original datasets.
• The criteria for software quality as specified in ISO 25010 are fulfilled.
• The code is open-sourced, well-documented and understandable.

Regarding the application of the algorithm to a new domain

The main question to be answered here is Is the algorithm applicable for the domain
of educational resources. This question must be explicitly answered by first stating the
hypothesis, explaining the methods used, reporting results and subsequently discussing
them. Unfortunately, the main success criterion of the algorithm is its subjective per-
suasiveness, which is hard to objectively and quantitatively evaluate without a study.
For that reason, there is the need to find good surrogate metrics instead. Criteria for
success include:

• The difference from the given dataset to the originally used ones is elaborated and
regarded for.

• Proper scientific methodology will be conducted for the evaluation of the results.
• The resulting semantic directions are convincing in a sense that they fulfill deman-

ded criteria that were specified before looking at results.
• The resulting semantic directions can be used as the basis for explainable recom-

menders.
• These recommenders achieve similar performances to modern ML techniques when

applied to find human categories such as a course’s faculty from the data.

8

2. Background

This chapter will introduce all necessary concepts relevant for the methodology imple-
mented in this work. For that, it will explain some important concepts for software
and replication and introduce the SIDDATA-project that revolves around the domain
educational resources. After that, Conceptual Spaces, the algorithm to generate them
unsupervisedly and how reasoning using them can be performed is introduced. Finally,
the work is put into the context of computational NLP with an overview of related
research as well as the theoretical foundation of the algorithm and its components.

2.1. Replication and Software Quality

Having established the goals of replicating an algorithm for a new domain, let us look at
how such a replication should be performed and how software quality can be measured.

2.1.1. Replication and Reproducibility

The workflow of data science generally follows the same pattern: A paper states there
is some problem X, claims that their algorithm Y may be good at problem X, creates
datasets Z for X, and then tests the code on these datasets. This test generally compares
X to alternative approaches from the literature and explores if any regularities in the
algorithm Y can be found. This may yield future research opportunities, showing what
other domains the algorithm may work for as well.

Replication fills this role by applying an existing algorithm to another domain. Results
for this are important, as it helps to see, first, if the claimed results are valid and if
they work on datasets that are not artificial and specifically created for the sole purpose
of testing the algorithm. Furthermore, the details of experiments in published work
are often opaque and omit important information to reproduce the algorithm. These
issues are mitigated trough repetition: The robustness of the algorithm to changes in
parameters or datasets is investigated. If changes in either of these have a major impact
on the results, there is reason to doubt the generalization of the algorithm, showing that
it may not be good to solve problem X after all.

It is absolutely crucial in science to ensure that all claims that are made are reprodu-
cible and testable, ensuring ease of replication. Reproducibility is the pinnacle of Open
Science.1 And “Open Science is just science done right”.2 Being a hot topic in psycho-
logy since the reproducibility crisis,3 the topic is just es relevant in computer science

1There is no single definition of open science. However reproducibility appears in most tries, such
as e. g. https://www.talyarkoni.org/blog/2019/07/13/i-hate-open-science/ (accessed at 25th March
2022)

2Quote from John Tennant, see e. g. https://soundcloud.com/tidningen-curie/jon-tennant-op
en-science-is-just-science-done-right (accessed at 25th March 2022).

3Baker M: 1,500 scientists lift the lid on reproducibility. Nature. 2016; 533(7604): 452-4. https:
//www.nature.com/articles/533452a (accessed at 25th March 2022)

https://www.talyarkoni.org/blog/2019/07/13/i-hate-open-science/
https://soundcloud.com/tidningen-curie/jon-tennant-open-science-is-just-science-done-right
h
t
t
p
s
:
/
/
s
o
u
n
d
c
l
o
u
d
.
c
o
m
/
t
i
d
n
i
n
g
e
n
-
c
u
r
i
e
/
j
o
n
-
t
e
n
n
a
n
t
-
o
p
https://soundcloud.com/tidningen-curie/jon-tennant-open-science-is-just-science-done-right
e
n
-
s
c
i
e
n
c
e
-
i
s
-
j
u
s
t
-
s
c
i
e
n
c
e
-
d
o
n
e
-
r
i
g
h
t
https://www.nature.com/articles/533452a
https://www.nature.com/articles/533452a

9 2.1. Replication and Software Quality

research.4 In that realm, Reproducibility may be seen as sub-goal of (the more fun-
damental) Sustainability, as e. g. by Mölder et al. [20], who claim that “reproducibility
alone is not enough to sustain the hours of work that scientists invest in crafting data
analyses”. To ensure that the analysis performed in this thesis is sustainable and adheres
to best scientific and software quality standards, let us find ways to formally define them.

2.1.2. Software Quality

The International Organization for Standardization (ISO) provides an official interna-
tional standard for the evaluation of software quality as ISO/IEC 25010:2011 [21]. The
full title of the norm is ISO/IEC 25010:2011 Systems and software engineering - Systems
and software Quality Requirements and Evaluation (SQuaRE). It has the objective to en-
sure the quality of software by providing objective and clearly defined standards for defin-
itions of success. It classifies software quality in eight characteristics, which each consists
of several sub-characteristics. The main characteristics are Functional Suitability, Per-
formance Efficiency, Compatibility, Usability, Reliability, Security, Maintainability and
Portability. Only some of these goals are relevant to projects like this. However, many
subgoals align with the hierarchy of aspects to consider for sustainable data analysis as
published by Mölder et al. [20], which is is reprinted as Figure 2.1.

Figure 2.1.: Hierarchy of aspects to consider for sustainable data analysis. Reproduced
from [20, Fig.1] (Creative Commons Attribution License)

Important aspects to conduct proper computer science and data analysis that allows for
Sustainability - allowing the analysis to be of lasting impact - thus include [20, 21]:

Functional Suitability, which means complete, correct and appropriate functionality.
Reproducibility, i. e. allowing validation and regeneration of results on the original or

new data. Entails understandable and well documented code as well as Stability.
Maintainability and Adaptability, i. e. the ability to modify the analysis to answer ex-

tended or slightly different research questions by allowing modifications.
Transparency, i. e. the ability for others to understand it well enough to judge if it’s

technically as well as methodologically valid - also ensuring Understandability, Ap-
propriateness and Accessibility, Analyzability and Testability.

Scalability, i. e. enabling the scalable execution of the algorithm and each involved step,
including deployment on complex compute clusters, grids or clouds. This includes
Performance Efficiency and efficient Resource Utilization.

Modularity, i. e. changes in one component have minimal impact on others, allowing for
easy exchange and extension. Also entails Changeability.

4Mesirov JP: Computer science. Accessible reproducible research. Science. 2010; 327(5964): 415-6.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3878063/ (accessed at 25th March 2022)

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3878063/

2. Background 10

2.2. SIDDATA and Educational Resources

To get a better understanding of the domain, this section elaborates on the specific use
case of recommendation of educational resources that shall be handled, and introduces
the SIDDATA project and platform under which this thesis was developed.5

Educational resources are not clearly defined. The term may refer to transcribed videos,
scientific papers or books, lecture material such as slides or notes, or even multimedia-
data such as MOOCs. In the context handled here, it generally refers to (descriptions
of) university courses. This thesis was started while working at the SIDDATA project,
with the idea to add a recommender to the platform that can generate course recom-
mendations with the user in the loop. SIDDATA is a joint interdisciplinary project for
“Individualization of Studies through Digital, Data-Driven Assistants”6 of the universities
Osnabrück, Bremen and Leibniz Universität Hannover, funded by the German Federal
Ministry of Education and Research.7

The project adresses the same problem as stated in the Introduction (1.2.1), namely
that e-learning and the amount of avilable resources increase, making the choice of right
resources an increasingly relevant problem for the learning success of students. Its deliv-
erable is a flexible data-driven DSA, that supports students in higher education in their
invidual learning and achievement of personal study goals by giving hints, reminders
and recommendation for their individual study paths [8], helping students in setting and
achiving individual and self-regulated personal educational goals. This is in line with
the increasing importance of skills such as self-organized knowledge acquisition and self-
regulatory competencies due to increasing importance of individualization in educational
paths of the globalized learning environment [7, 8].

For that, the collaborative project combines heterogenous data and information in a
digital study assistant. Data is collected from multiple sources, such as the LMS, offers
and resources of other universities and institutions, and data collected from its users. To
allow for this heterogeniety and also future extensions, for example new data sources such
as MOOCs through several apis APIs, different front-ends, or different recommendation
methods, the system relies on a highly modular and extensible architecture. The Frontend
is realized as a plugin for the the university’s LMS Stud.IP [22]. This not only allows for
easy user access, but also to get data about courses from the LMS using cronjobs. The
Frontend is connected over a RESTful API to the Backend, which is written in Python
on basis of the Web Framework Django and relies on a relational PostgreSQL database
to store information.

The Backend consists of seperate encapsulated recommender modules in a loosely coupled
architecture and a common ontology, allowing to easily add new subsystems. The mod-
ules generate recommendations towards personal educational goals on basis of the collec-
ted data, which are displayed to the user in the Frontend. What comprises a recommender
is grouped from a user perspective, such that each recommender focuses on a topic. The

5As Siddata signifies both the project and the developed digital assistant, the all-upper ’SIDDATA’
henceforth refers to the project, while the specific developed software will be denoted ’Siddata’ or ’DSA’.

6https://www.siddata.de/en/
7BMBF. Funding number: 16DHB2124

https://www.siddata.de/en/

11 2.3. Conceptual Spaces

currently implemented recommenders include, for example, one to find peers with similar
interests, get information about scientific careers, personality-based learning behaviour-
and study tips, or information regarding local and remote courses and OERs. Another
module recommends courses using a combination of rule-based and modern ML tech-
niques that relate natural language queries with the courses known to the system (picked
up in Subsection 2.4) [8].

The system is currently in its third prototype, and preliminary evaluation has shown that
modules that provide personal recommendation are most well received [8]. This and the
ease of use to add new recommenders indicate a high likelyhood of success for adding a
new module that recommends courses in the way described above.

The dataset used here was collected through the Siddata platform, which collected courses
and events from the three universities currently connected to it, as well as other sources
for MOOCs and other OERs through respective APIs (more details in Section 3.1.1). It
should be noted that the dataset is not artificially generated (unlike [1–3]) but collec-
ted from current courses and their descriptions - making an algorithm for this domain
incorporated as recommender to the platform a contribution with practical application.

2.3. Conceptual Spaces

This section will introduce CSs as tool of choice and introduces the replicated algorithm
to generate them unsupervisedly. Standing in between classical symbolic artificial intel-
ligence and modern black-box techniques, CS can serve as a bridge that allow to model
commonsense reasoning geometrically. Some examples for that will be elucidated later
in this section.

Theory of Conceptual Spaces

The theory of Conceptual Spaces was first introduced by Peter Gärdenfors in his 2000
book Conceptual Spaces: The Geometry of Thought [18, 23] both as a theoretical model of
human concept formation and a format for knowledge representation in artificial systems.

The recent years have seen a successively increase of the dichotomy between symbolistic
and connectionistic approaches to knowledge representation. The former explicitly
model knowledge representation and reasoning through e. g. logical calculi, sets of rules
or semantic knowledge bases. This allows for explicit and explainable re-creation of high-
level, abstract human reasoning such as deduction (syllogisms), but requires explicit
manual creation of abstract knowledge bases such as ontologies, lexicons and sets of
rules. The other side consists of modern ML techniques such as ANNs and other data
science algorithms. Many of these techniques can work with noisy, high-dimensional
data, such as direct visual input. On real world datasets, they generally outperform
classical algorithms with high margins whilst only requiring some target label. However,
they are black boxes, meaning that their inner workings cannot be inspected or manually
tweaked.8. CSs can serve as a bridge between symbolistic and connectionistic approaches

8And also blindly replicate biases in the data, see e. g. https://hbr.org/2019/10/what-do-we-do-
about-the-biases-in-ai (accessed at 5th April 2022)

https://hbr.org/2019/10/what-do-we-do-about-the-biases-in-ai
h
t
t
p
s
:
/
/
h
b
r
.
o
r
g
/
2
0
1
9
/
1
0
/
w
h
a
t
-
d
o
-
w
e
-
d
o
-
https://hbr.org/2019/10/what-do-we-do-about-the-biases-in-ai
a
b
o
u
t
-
t
h
e
-
b
i
a
s
e
s
-
i
n
-
a
i

2. Background 12

to knowledge representation. By having CSs as a layer of reasoning and representation
in between both, classical knowledge base symbols would be grounded in noisy high-
dimensional data, allowing for high-level syllogistic reasoning from real-world data.

According to Gärdenfors, concept-representation in humans is represented by three levels
of accounting for observations: The symbolic level, the conceptual level and the subcon-
ceptual level [18, p. 204]:

Subconceptual sees observations are the firing of the neurons of our sensory receptors,
without any conceptualization (connectionism, black-box algorithms, ANNs, ML).

Conceptual, where observations are defined not as token of a symbol, but as vector in
a metric space of some quality (prototype theory, linear algebra).

Symbolic represents observations by describing them in some specified language (formal
logic, syllogisms, symbolism, classical AI, logical positivism).

These levels are not in conflict, but different models of the same phenonemon, each cover-
ing distinct important aspects and each allowing a set of reasoning methods. The process
of inducing a general rule from, few samples, for example is represented as pattern-
matching on the firing patterns in the subconceptual level, which translates to the con-
ceptual level as geometric reasoning through regions and direction. As another example,
semantic relations such as hyponyms from the symbolic level are modelled as geometric
sub-regions on the conceptual level.9 Automatically generated conceptual spaces could
allow to mimic high-level syllogistic reasoning from real-world data without the need to
manually add countless facts. Additionally, it provides a new way to model reasoning
and inference for both other levels through geometric relations, providing explanations
for the noisy subconceptual level and computationally less complex algorithms for the
symbolic level.

Summarised, regardless of the theory’s aspiration to accurately model human conceptu-
alization and reasoning, it provides a useful knowledge representation method and tool
that allows to model kinds of human reasoning with novel algorithms that cannot be
done with both other well-researched methods [18, Sec. 6.7]. Furthermore, it can serve
as a representational format to express semantic relations for the semantic web [23] with
a richer structure than classical ontologies (e. g. RDS, OWL or WordNet) and thus allows
more than deductive reasoning based on strict is-a relationships and explicit, unambigu-
ous, universal truths.

Definition
Conceptual Space. A conceptual space is a geometric structure used to encode the mean-
ing of natural language terms, properties and concepts. The metric space is spanned by
quality dimensions denoting basic domain-specific properties based on perception or sub-
symbolic processing. Natural language categories (concepts) correspond to convex regions,
whereas points denote individual objects (instances/entities, allowing for geometric solutions
to commonsense reasoning tasks such as betweeness or induction.

9For example, the validity of the statement “a robin is a bird” is given because the concept robin is
geometrically a subregion of the concept bird.

13 2.3. Conceptual Spaces

In conceptual spaces, concepts are represented as convex regions in domain-specific,
human-interpretable spaces. Figure 2.2 represents a sample space for the concept of
apple, such that every instance of an apple is thus a vector that lies inside the region of
the concept. This allows for high-level reasoning: The question “Will an apple fit into
my bag?” can be answered by checking if the size dimension of the region is smaller than
the dimension of the bag.

Formally defined, a conceptual space requires the following definitions:

Quality Dimensions are atomic units of perception. Some of these are necessarily linked
(such as hue and saturation), making them integral, whereas others (e. g. temperat-
ure and weight) are seperable. Typically, each dimension corresponds to a primitive
cognitive feature.

Domain A set of integral dimensions that are seperable from others, like the color domain
made up from hue, saturation and value. Conceptual spaces are grouped into
several low-dimensional subspaces according to these domains.

Similarity is defined as inverse distance, which requries a metric. A distinction can be
made for the aggregation of integral and separable dimensions.

Betweenness An object Y is between two other objects X and Z if and only if d(x,y) +
d(y,z) = d(x,z).

Natural Properties (criterion P [18]) are defined as convex regions of a domain in a
conceptual space. A convex region has the property that an interpolation between
any two points in this region is necessarily also in this region.

Concepts (criterion C [18]) are combinations of (potentially correlated) properties. “A
concept is represented as a set of convex regions in a number of domains together
with a prominence assignment to the domains and information about how the
regions in different domains are correlated” [23, p. 8]

Entities are specific instances (tokens) of a concept, encoded as points.
Context can be modelled in a CS by weighting certain dimensions higher than others,

influencing distance and how concepts are formed from properties.

Figure 2.2.: Inner form of a Conceptual Space for an apple, displayed as product of
different properties, which are convex regions in different quality domain
spaces. Adapted from [24].

2. Background 14

Let us explore some corollaries of the previous definition:

• Each conceptual space contains only items for which the space’s dimensions make
sense, so you would not find kings in a conceptual space of cabbages.

• Concepts roughly correspond to (non-proper) nouns. Properties generally encode
Adjectives, and points refer to proper nouns (the name of e. g. a particular person,
place, organization, or thing).

• From the criterion of convexity for natural properties and the definition of between-
ness, it follows that if an object Y is between X and Z, and both X and Z have a
property, Y must also have this property.

• Relative properties can be defined as regions on a relative scale - the property "tall"
can accordingly be defined to be true if the entity is in the top 33% with respect
to the size-property of all relevant objects.

2.3.1. Data-Driven Generation of Conceptual Spaces

So far, the area of application for Conceptual Spaces has been small. Most of the current
works that rely on conceptual spaces create custom phenonemal spaces for semantic
domains, where quality dimensions are chosen by the researchers (eg [25]).

The previous section has shown that CSs can serve as a framework for interpretable
classifier that allow for explainable recommendation based on geometric reasoning, re-
placing the need to manually create knowledge bases. If, however, one needs to manually
create these spaces, not much was gained. The work of [1] is a technique that allows
to automatically generate spaces from pairwise dissimilarites of a corpus of texts in a
data-driven fashion. In his book, Gärdenfors provided several suggestions how one could
build spaces from high-dimensional input neurons. One of these was to use the MDS
algorithm which creates a Euclidean space from pairwise distance matrices, such as an
individual’s assessement of similarities. The work of [1] basically follows this suggestion
using classical AI algorithms.

To create the space, the authors unsupervisedly extract words of the text descriptions
of corpus of entities of a specified domain. These words serve as candidates for semantic
feature directions of a conceptual space. To find out which candidates are useful as
features, they first embed all entities in a vector space. To identify which of the candidates
constitute meaningful features, they create a linear classifier for each of the candidates
that splits embeddings of descriptions that contain the word from those that do not.
Those words for which the classification performance performs well enough are considered
meaningful features.

In their paper, the authors create domain-specific conceptual spaces for three domains
that allowed easy collection of text corpora, which were movies and their IMDB-reviews,
placetypes and tags of photos at these places, as well as wines and their reviews on a
respective platform. Each movie, place-type or wine will henceforth be termed entity.
A representation of a movie is then generated from the BoW of the descriptions of the
individual movies, leading to a very high-dimensional and sparse representation for all
movies. To make the representations less sparse and more meaningful, the words in
the BoW are subsequently PPMI-weighted, which (similar to tf-idf) weights words that

15 2.3. Conceptual Spaces

appear often in the description of a particular movie while being infrequent in the corpus
overall high, ensuring that discriminative words are more relevant in the embedding.This
weighted BoW is, however, no Euclidean space, which is why the authors subsequently
use MDS, a dimensionality reduction technique that creates a Euclidean space while
ensuring that original distances are preserved as well as possible. This space already
allows for interpretable geometric reasoning such as betweeness, but its directions are
not interpretable human concepts. To find these, the authors assume that words that
describe relevant features of the respective entites appear among their descriptions and
that words describing meaningful features correlate with good classifier performance in
separating entities based on them. To classify, the authors then use linear classifiers such
as SVMs.

Consider the domain of movies, and the word "scary" as candidate feature direction. The
movie-embeddings are grouped into those that contain the words and those that do no,
and finds a hyperplane that divides both groups. The advantage of linear classifiers is that
they create a linear hyperplane that best separates positive from negative entities. The
orthogonal of that hyperplane is a vector, which can serve as feature axis: The distance
of orthogonally projecting an entity onto this vector induces a ranking of entities. The
further away an entity’s embedding is from the decision surface on the positive side, the
more this feature applies to the entity. To assess the performance, [1] use Cohen’s kappa
measure to compare the ranking induced by the plane with the number of occurences of
the word for the entity. The better these rankings match, the higher the likelyhood that
a good feature direction was found. To reduce the number of resulting features, they
are subsequently clustered based on the similarity of their orthogonals before the mean
direction of this feature-cluster is calculated.

The final feature-based representation is generated by representing each entity as
vector whose individual components corespond to the ranking of this entity compared to
all others for each of the most salient feature directions. Thus, in the final feature-based
representation only the relation of each entity in relation to all others with respect to
the salient directions is relevant. Given that respective directions are not orthogonal [1,
p. 22] and that rankings are only ordinal (where distances are not quantifiable), the final
embedding loses some geometric properties such as the Euclidean distance metric, but
gains interpretable directions.

The algorithm is optimized to look good to humans, meaning there are no straight-forward
metrics or obvious evaluations. To evaluate its performance quantitatively, we will test
if it is possible to use the detected semantic directions to classify human concepts among
the data, such as the genre assigned to a movie.

2.3.2. Explainable Reasoning with Conceptual Spaces

The goal of this thesis is to provide explainable recommendation for educational resources.
The main reason we are considering CSs as knowledge representation method for our
domain is their ability to model many cognitive reasoning methods computationally. So
now, after having explored what conecptual spaces are and how to generate them, let us
see how they help to allow for explanable reasoning. The relations of semantic features

2. Background 16

can be used for classification based on properties understanable for humans. Further,
they allow the entities to be ranked such that a user can specify her demanded degree
how much a property applies, as exemplified by the Movie Tuner in Figure 1.1.

Conceptual Spaces allow to model many forms of commonsense reasoning geometrically
or algebraically. Another property that is important to us is that in contrast to typical
recommendation engines, in CSs similarity is necessarily context-dependent. Derrac &
Schockaert [1] use these features to create many forms of reasoning systems such as ones
based on betweeness, relational similarity or a fortiori rasoning. Let us look at what
this means in practice, as well as how standard symbolisic reasoning can be modelled in
conceptual spaces.

Categories and Ontologies

Logic-Based reasoning/inference can model many forms of reasonings, but it requires
the knowledge to be encoded in logic in manual work and doesn’t allow for fuzzyness.
In formal logic/ontologies/lexical databases, semantic relations of concepts are explicitly
modelled. The RCC [26] links these relations to their geometric interpretation, providing
a bridge between these and Conceptual Spaces [27], in which natural language terms are
not modelled as points or vectors, but as convex regions Once the handled entities are
embedded into a conceptual space, many ontological relations are implied through the
relation of these regions. This allows to replace symbolic inference engines with geometric
algorithm when using the richer structure of CS instead of ontologies. Table 2.1 displays
these respective relations. Apart from these however, a CS encodes more than just a
taxonomy of concepts, but allows for interpolation and extrapolation of knowledge. This
allows for other human forms of resoning.

Ontology Re-
lation

Other Names RCC5 [26] analog /
Geometric equivalent

Example

Type Identity Equality of Concepts, Syn-

onymy

Identical Regions
(EQ)

Animals with a liver &
Animals with a heart

Subsumption Hyponyms/ Hypernyms,

is-a-relationship, Concept

Hierachies, Taxonomies

Proper Parts(PP,
PP-1), Subregions

Every pizzaria is a res-
taurant

Mutual Ex-
clusiveness

Discrete Regions
(DR), unconnec-
ted/disjoint regions

No Restaurant can be a
beach

Overlapping
Concepts

Partial Overlap (PO) Some bars serve wine,
but not all

Opposites Set inverse Humans & Non-human
animals

Token Iden-
tity

Equality of Names, Syn-

onymy

Equal coordinates Morning star & Venus

Meronymy /
Holonymy

part-whole realationship Product spaces (see
[24]

Trees & Leaves

Table 2.1.: Link between Conceptual Spaces, the Region Connection Calulus and Onto-
logial Relations

17 2.3. Conceptual Spaces

Similarity-based reasoning

As discussed in Section 1.2.1, modern recommendation algorithms often rely on similarity-
based reasoning by suggesting that users that liked and item may also like similar items
(collaborative filtering). In terms of classification, this corresponds to the 1-Neirest-
Neighbor approach, where an object is assigned the class of the most similar item:

Alice likes the Lord of the Rings
The Hobbit and Lord of the Rings are similar
Alice will probably like The Hobbit ∴

A has property x
B is similar to A
B likely also has property x ∴

This cannot be done with classical logic, which can not model degrees of something but
only universal full truths. While modern recommendation engines require only labelled
examples, these algorithm lack explainability : The employed distance function does not
encode in what respect two items are similar. For human reasoning however, there is no
such overall Similarity - instead similarity is relative to a domain and only meaningful
in context[18, p. 110]. In a conceptual space, this can be modelled: The distance func-
tion can give weight for certain dimensions depending on context or objects of different
concepts can be considered similar if they share enough properties. Most importantly
however, in a CS a system for recommendation can ask users what dimensions of a given
entity the user liked to suggest items that are similar in that regard.

Induction

Another very important tool of human common-sense reasoning is abstraction and gen-
eralization: Going from single observations to general rules. For that, we need to decide
which properties of the respective observation are relevant, distilling sensible informa-
tion from irrelevant noise. Instead of just implementing black boxes that do inexplicable
pattern matching, it helps to look at the underlying rules. On the Conceptual Level, eg
If two different entities of the same class have a property, maybe all entities of that class
have a property can be modeled through categorical inductive inverences:

Grizzly bears love onions
Polar bears love onions
All bears love onions [18, p. 226] ∴

According to Gärdenfors [18], representations do not need to be similiar to the objects
they represent, but the similarity relations of the representations should correspond to
those of the objects they represent. From this follow a few other translations of reasoning
and geometric properties. [1] elaborate on many other of these and build semantic
classifier that model other kinds of reasoning. For this thesis, let us look at one example
of these, which may prove useful in recommendation and classificiation and exemplifies
how the representations benefit from salient directions, namely A fortiori reasoning:

The shining is a horror film
The shining is scary
It is more scary than The shining

It is likely also a horror film ∴

A has property x
B is more severe than A

B likely also has property x
or a more severe property ∴

2. Background 18

As argued by Derrac & Schockaert [1], automating this and many other forms of inference
requires a richer form of knowledge than what is available in classical logic, namely a
notion of Betweenness and Directionality. In Euclidean spaces, the intuitive notion
of these concepts is most faithfully modelled. Because of that, the authors regard it a
necessary condition for their algorithm.

Summarised, conceptual spaces allow to model the forms of explainable reasoning that
thus far required symbolic inference engines and do not share the problems of symbolistic
approaches such as having to explicitly identify synonymy. On top of that, they also
to allow to model fuzzy real-world concepts and relations. If Euclidean spaces are used,
similarity relations of the representations, such as betweeness and parallelism, correspond
to the real-word objects they model.

2.4. Other Related Work

This thesis focuses on the aforementioned algorithm, primarily considering [1] and on top
of that only two follow-up works: [2, 3], which have shown to provide useful extensions
for it without changing its core logic. This shall by no means mean that these are the
only ones that could be considered.

Tag Genome By far the closest to what we do is the algorithm of Vig et al. [16], who
generate a so-called tag genome for the domain of movies supervisedly based on keywords
that users have assigned manually. Their algorithm takes these binary assignments and
creates a dense representation that encodes a degree of relevance for each combination
of movie and tag. Furthermore, they create a dedicated movie recommendation system
on basis of this (interface reprinted in Figure 1.1). This system provides explainable
recommendation based on these tags, allowing users to request recommendations for
movies such as “I’d like something less violent than Reservoir Dogs” [16, p. 3]. Not
only is their application exactly what is being demanded here, but the algorithm itself
also performed significantly better than the one of Derrac & Schockaert [1] in a human
study of the latter, in which they directly compared the techniques by asking subjects
which of the respectively extracted keywords better describes the difference between two
movies [1, p. 44]. Considering however that Vig et al.’s [16] algorithm is supervised and
requires data which does not exist for our domain, it cannot be applied in our case.
On the contrary, the final results of their algorithm are preferred by users over the ones
generated with the algorithm considered in this work, but structurally exactly equal.
This provides clear evidence that the desired application of this work is possible, albeit
of lower quality than what their work achieved.

Generally, what is done here corresponds to Representation Learning, whose aim is
to discover the inherent semantic structure of a representation unsupervisedly [28]. More
specifically Disentangled Representation Learning, where only salient attributes
relevant to the task at hand should be extracted, which means finding latent embed-
dings whose dimensions are meaningful interpretable features. Generative Adversarial
Networks [29] or Variational Autoencoders [30] are modern techniques that are good at
finding latent information in images. Especially InfoGAN [31] should be named, which

19 2.4. Other Related Work

can extract interpretable features such as pose, hairstyle, prensence of glasses and emo-
tions from images unsupervisedly.

LDA In the realm of NLP, this also relates to Topic Modeling, which aims to extract
multiple hidden themes from a given text corpus by discovering groups of co-occuring
words unsupervisedly. A well-known algorithm for this is Latent Dirichlet Allocation
(LDA) [32], which represents documents by its salient topics, each of which being a
cluster of natural language terms. This technique bases on the assumption that each
text consists of various topics, which are in turn made up by various keywords, making
it possible to represent texts as multinomial distribution over latent topics which are
aggregations of these keywords. Assuming a hierachical bayesian distribution where
each text of a corpus is represented as mixture of topics it contains, their unsupervised
algorithm extracts these by approximating the underlying infinite mixture of topic with
an expectation-maximization (EM) algorithm. This yields a representation where each
text is explicitly represented by the most propable words according to this distribution
for a finite number of most probable topics. The algorithm finds use in text classification
and collaborative filtering, but relies on unflexible BoW representations, making it hard
to incorporate additional information such as correlations between topics [2].

Academic Interests Recommender Regarding the used domain, there is already a sys-
tem incorporated into the Siddata-DSA that aids students by finding and recommending
educational resources. SidBERT [33] extracts implicit information from courses and other
learning material by their title by categorizing them into one of 905 classes derived from
the third or fourth level of the DDC [34], a hierachical tree stucture system commonly
used to categorize library books. SidBERT uses the same dataset as this work and classi-
fies with a custom classification head ontop of a BERT-encoder ANN which is trained on
1.3 million book titles collected from three universities as well as the German National
Library, currently achieving 45.2% test accuracy (62.2% recall) among 905 classes.

Variations of this Algorithm There are also techniques that extend the algorithm of
Derrac & Schockaert [1]: Alshaikh et al. [35, 36] use this algorithm as one of their steps
and create a similar algorithm to find disentangled features that is in line with the re-
quirement of Conceptual Spaces to consist of low-dimensional domain-specific subspaces.
Regarding other unsupervised ways to create Conceptual Spaces, Gärdenfors himself sug-
gested in his book [18] to use self-organizing maps (Kohonen-Networks [37]) instead of
classical NLP algorithms and MDS to unsupervisedly create concpetual spaces. Finally,
the whole concepts of vector-space models for words [38] and texts [14, 15] is related
in that represents the meaing of terms, phrases or documents by embedding them in
a vector space. However these have arbitrary non-interpretable dimensions and are no
metric spaces, thus having no relation of geometry and meaning for e. g. betweeness or
analogical reasoning, which will be eloborated in the next section. For more related work
it is also referred to the respective sections of [1–3].

2. Background 20

2.5. Relevant Algorithms and Techniques

Thus far, we have described the base algorithm which this thesis replicates. Before
describing each of its step in detail, it is useful to get a grasp of the theoretical foundation
of the creation of linguistical VSMs in general. This also helps to place the algorithm
in the context of the field of computational NLP. Note that this section primarily serves
to understand the key concepts required for the methodology of Derrac & Schockaert
[1]. To do that, we will sometimes put emphasis on other algorithms of the same type
than those actually used in the implementation if they express the model more explicitly.
The methodology is modular and e. g. only requires some algorithm for dimensionality
reduction.

2.5.1. Classical Vector Space Construction

The methodology in question consists of several components, each of it being an al-
gorithm in itself. The first steps are basically classical linguistic tools: A text corpus is
preprocessed and the words of its entites are counted and raw counts are transformed.
From these values a frequency matrix is generated and its dimensionality is reduced,
before directions for domain-specific similarity measures between the regarded entities
are extracted.

Lowe [39] conceived a general framework to construct vector spaces from texts, splitting
the process into the steps of first counting the token frequencies, then transforming the
raw counts into more useful quantificiation measures and smoothing the space using
dimensionality reduction, before calculating the similarities on the resulting embedding.
While the considered algorithm requires more steps before calculating the similarities to
allow for domain-specific and other more complex forms of reasoning, it also adheres to
this structure.

Distributional Semantics

“you shall know a word by the company it keeps” - Firth [40]

The core principle behind any kind of embedding of linguistics units such as words or
documents is the distributional hypothesis, which states that linguistic items with similar
distributions have similar meanings. If this is the case, the meaning of words correlate
with their distribution: Words that occur in similar surroundings have similar meanings.

More precisely, vector-space models fall into different categories depending on if the
similarity of documents (Term-Document-Model) or of words (Word-Context-Model) is in
question. Because the algorithm considered here describes the relation of entites through
their descriptions it falls under the latter category. According to Turney & Pantel [41],
the assumption underneath the Term-Document model is more precisely called the bag-
of-word hypothesis, which states that documents with similar distributions of words
have similar meaning. Accordingly, when embedding documents into a vector space, it
must be ensured that the similarity relations of the embeddings closely resemble the
similarity of the original documents.

Many NLP tasks rely on documents being represented as vectors, such as Information
Retrieval, Recommendation, Text Classification, Translation, Sentiment Analysis and

21 2.5. Relevant Algorithms and Techniques

many more [11, 13–15, 41–45]. The process of turning a collection of texts document
into numerical feature vectors is referred to as vectorization. According to Turney &
Pantel [41] (who base their work on Lowe [39]), the construction of a VSM from texts
can be decomposed into a four steps:10

1) Building the Frequency Matrix which starts with preprocessing such as tokenisation
followed by normalizing and possibly lemmatizing the tokens amongst many other
possible techniques, before counting frequencies of either words or n-grams, yielding
a matrix of BoWs.

2) Transforming Raw Frequency Counts “[B]ecause common words will have high fre-
quencies, yet they are less informative than rare words” [41], it may make sense to
adjust the weights of the elements of the frequency matrix such that the distances
are not distorted by them.

3) Smoothing the Frequency Matrix A matrix that counts the frequency of any word
in the corpus is generally noisy, sparse and extremely high-dimensional. Dimension-
ality Reduction helps to counter all three issues, yielding vectors closer resembling
the document’s latent information.

4) Calculating Similarities of individual vectors is the final step and aim of most em-
bedding algorithms. This can be done in various ways, a classical technique is to
use their cosine distance.

Importantly, our algorithm differs from this four-step-process by injecting several ad-
ditional steps before calculating similarities. This is because we hold the notion that
similarity is necessarily context-dependent and there is no overall similarity (see Sec-
tion 2.3.2), which requires additional dissection of the final step. In the following, we
will describe three steps relevant for us.

1. Bag-of-ngrams representation

The most relevant information that can be taken into account when comparing two texts
are the words they consist of. Accordingly, an obvious choice to vectorize a collection of
documents is to describe each document by the counts of its word occurences, which is
called BoW-representation.

This approach is simple but has important drawbacks: Firstly, a document is not fully
described only by the words it contains but also by their constellation. The information
about ordering and relative position is lost in this representation (consider not knowing
the position of negations). To alleviate this issue, texts can instead be represented as
glspln-grams, where the tokens are not single words but all sequences of words of length
n. The drawback is that this vastly increases sparseness and dimensionality.

Further, by representing each word as separate one-hot-vector ignores word semantics: as
every vector is equally distant from any other, synonyms (cases where the same meaning
is expressed with different words) are just as far apart as antonyms (opposites). This
unreliability of term-document-association is what Deerwester et al. [46] calls the funda-
mental information retrival problem: The mapping between words and their meanings is

10When considering neural embeddings such as Word2Vec, the separation of these steps is hidden in
the algorithm and not as distinct, but the principles hold also in these techniques.

2. Background 22

not bijective, but ambiguous. Different words can be used to express the same concept,
and sometimes the same word refers to different concepts. This issue is partially allevi-
ated by the dimensionality reduction performed subsequently, which may provide a way
to determine what concepts are implied and obfuscated by fallible word choice.

To address both issues, modern algorithms exist, which train a document embedding
directly based on constellation (alleviating lost ordering) of word-embeddings that are
pre-trained based on their usual context (alleviating distance relation problems)

2. Word-weighting techniques

When comparing the BoW-representations of texts, it is reasonable to give more weight
to surprising words than to expected ones. The idea behind that is, that “surprising
events, if shared by two vectors, are more discriminative of the similarity between the
vectors than less surprising events.” [41, p. 156] Another crucial reason is, that individual
texts in the corpus are of drastically varying length, so longer entities would naturally
dominate shorter ones when only comparing the raw counts - considering relative frequen-
cies instead of absolute ones alleviates such problems. The algorithms explained below
transform the raw frequency-counts of a document and an n-gram into some score, de-
pendent on the number of occurences of this term in this document as well as the counts
of other n-grams and other documents. This score is henceforth called a quantificiation.

Let us consider term t, corpus C, document d ∈ C (represented as BoW). Then:
term-frequency tft,d: How often t occurs in d

document-frequency dft: How many documents ∈ C contain t

summed term-frequency dft,∗ =
∑

d′∈C tft,d′ : How often t occurs in any document ∈ C

Tf-Idf The most well-known technique formalizing this concept is tf-idf, which gives a
term-document pair a higher weight if the term is generally rare in the corpus (low df)
and frequent in the respective document (high tf):

wt,d = tf t,d ∗ log(
|C|
dft

)

PPMI Turney & Pantel [41] suggested to use the PPMI measure instead of tf-idf to
weight the counts in document-term matrices, relying on [47]’s work taking into account
psychological models to extract information about lexical semantics from co-occurence
statistics. According to these works, PPMI performs most plausible when measuring
semantic similarity in word-context matrices compared to human evaluation. For that
reason, Derrac & Schockaert [1] and its follow-up works [2, 3] rely solely on this tech-
nique. Like tf-idf, it weights terms that are strongly associated with a document highly
by favoring terms frequently associated with document d while infrequent in the cor-
pus overall. For that, it uses the logarithm of the probability of the considered term-
document-combination d, t, normalized by the probability of this document co-occuring
with any term (d, ∗) and this term co-occuring with any document (t, ∗)

wt,d = max

(
0, log

(
pd,t∑

t′ pd,t′ ∗
∑

d′ pd′,t

))
pd,t =

tft,d∑
d′
∑

t′ tft′,d′

23 2.5. Relevant Algorithms and Techniques

3. Dimensionality Reduction and Latent Space Embedding

At this step, we have a sparse and high-diensional matrix quantifying the importants of
all corpus-terms for all documents. The next step is to smooth this frequency matrix.
Reducing the dimensionality of this matrix reduces computational processing load and
helps in alleviating the prevalence of irrelevant noise in the original matrix [41]. Addition-
ally, the right algorithms may also make use of the principles of distributional semantics
to alleviate the aforementioned problems of word distance and synonymy. The result is
that the document vectors depend less on their exact phrasing and instead more closely
resemble the concepts that these words expressed, also called its latent (hidden) topics.
This may even improve subsequent similarity measurements, as it is less distorted by
noise and word choice irregularities.

The technique that most explicitly models a document’s latent topics is LSI [46], which
relies on the fact that words that are close in meaning will occur in similar pieces of text
to yield embeddings where words and documents of similar meaning are similar.

LSI/LSA11 While language is used to express the world, it is also highly ambiguous
and redundant, such that the relationship of model and reality is only a statistical one.
The same thing can be expressed with different words (synonymy), and sometimes a
word has different meaning depending on context (polysemy). The underyling latent
semantic structure in texts is obscured by the randomness of word choce, such that
individual words provide only unreliable evidence about the conceptual topic or meaning
of a document.

However, language has a lot of structure, which allows to treat this as statistical problem:
The occurrence of some patterns of words gives a strong clue as to the likely occurrence
of others. According to the distributional hypothesis, the matrix of observed occurrences
of terms applied to documents can be used to estimate parameters of the underlying true
model. This is explicitly done using linear algebra operations on the frequency matrix in
LSI [46].

This algorithm decomposes the document-term matrix into a product of three linearly in-
dependent factors: words-per-topic ×topic-importance ×corpus-topic-distribution. Then
it runs Truncated Singular Value Decomposition (SVD), which finds a lower-rank approx-
imation of the matrix containing the hidden information while identifying and keeping
relationship patterns. In other words, by taking only the important components from this
matrix (rank-reduction), the new representation becomes lower-dimensional, less noisy
and less sparse, but still approximates the original similarity behaviours.

LSI explicitly represents both documents and terms in the same semantic space, such that
they are treated equally when the SVD analyses their similarity behaviour. It yields a
representation of arbitrary dimensionality that captures the relation of term-term, term-
document and document-document similarity by ensuring that similar items will end up
close in the space. Importantly, this yields a representation in wich both documents
and terms correspond to vectors. The similarity of each of these is assessed via the

11Both terms refer to the same algorithm, which is generally called LSI when applied to document
similarity and information retrieval, and LSA when applied to word similarity.

2. Background 24

cosine-distance. To analyse the similarity of a document and a query term, the term is
embedded by generating pseudo-document (a document that contains only this term),
and close vectors are returned, which may include results that conceptually similar but
do not share any words.

As consequence of the compression, some dimensions are combined and depend on more
than one term - generally this merges embeddings of similar terms, mitigating synonymy.
Also Polysemy is reduced, as only the components of polysemous words that have encode
a similar meaning than the cluster are relevant for the combined direction of the vector.
Another consequence is that terms that did not actually appear in a document may
still end up close to the document, if that is consistent with the major patterns of
association in the data: Terms that could have been used as well.“if the tags love story
and hilarious have been applied to an item, it is likely that the tag romantic comedy is
highly relevant[16].”

The algorithm to create the Tag Genome in [16] bases to a high degree on this algorithm:
It creates a binary frequency matrix for all considered documents and a set of tags,
embeds documents and pseudo-documents generated from the tags and compresses it
with LSI. The relevance of a tag for a documents tag-lsi-sim(t,i) is then calculated
by their embeddings’ cosine similiarity. Also, the algorithm appears to be a good method
to find clusters of similar terms for semantic direction, given that it considers these terms
as directional vectors already.

25 2.5. Relevant Algorithms and Techniques

Multi-Dimensional Scaling Derrac & Schockaert [1], require that spatial relations such
as betweeness and parallelism hold in the vector space embedding. For that, they require
a space of Euclidean metric which is not given in LSA, which generates a space based
on the similarity-centred objective to reduce cosine distances of similar entites. Instead
they follow Gärdenfors [18] suggestion and rely on MDS. While the algorithm bases
on Euclidean distance, the principle that items of similar meaning will end up in similar
positions still holds. In fact, it should hold most kind of compression, bearing in mind the
distributional hypothesis and the fact that if there is some inherent structure (obfuscated
by wording) that explains the dissimilarity of any text corpus sufficiently well, it will
remain after the compression.

MDS [48] is a dimensionality reduction technique that induces a finite vector-space rep-
resentation from pairwise similarities. It takes a dissimilarity matrix as input and returns
a fixed-dimensional embedding in which original distances are kept as close to the ones of
the dissimilarity matrix as possible. Gärdenfors considered using this technique it to find
an underlying phenonemal conceptual space from human similarity judgements, given
that it yield qas high a correlation as possible between the similarity judgements of the
subjects and the corresponding distances in the estimated dimensional space [18, p. 22].
The algorithm has quadratic space complexity [36]

Especially relevant is the metric MDS algorithm, which requires metric distances as input
and models their similarity as distances in a space finite space of lower dimensionality
with a Euclidean metric. A distance measure is a metric if the following axioms hold:

d(x, y) = 0 ⇔ x = y (2.1)

d(x, y) = d(y, x) (2.2)

d(x, t) ≤ d(x, y) + d(y, z) (triangle inequality) (2.3)

Given metric distances d(pi, pj)∀1 ≤ i, i ≤ j and the demanded number of dimensions
k, the algorithm starts with a random initial distribution and progressively adjusts the
coordinates by re-computing the embeddings v1, ..., vn ∈ Rk such that distances are
maintained as well as possible by minimizing

n−1∑
i=1

n∑
j=i+1

(d(pi, pj)− ∥vi − vj∥)2

26

3. Methods

This chapter explains the methods that were used to achieve the two goals of replic-
ating the algorithm of Derrac & Schockaert [1] with the improvements of [2, 3] with a
sustainable architecture and applying it to the domain of educational resources.

To do that, we will firstly look at the datasets used by [1–3], as well as our own one and
compare key statistics. The subsequent section then explains the used algorithm broadly
before looking at each of its steps in detail. Based on that, the specific architecture that
was created as well as the workflow used to generate meaningful results will be introduced
to demonstrate its process. The final section explains what kind of methods and metrics
were used to generate and interpret the results that will follow in the next chapter.

Given that there were two research questions, one asking if the replicating algorithm can
be applied to another domain and the other asking for a reliable application, it makes
sense to both look at datasets and general algorithm on the one side, but also at the
worflow and architecture. Writing about the latter while also open-sourcing the code-
base is especially useful to ensure ease and speed of future replication, such that all claims
can be independently tested with the exact same implementation without having to rely
on ambiguous and incomplete verbal explanations.1

3.1. Datasets

Let us first elaborate on the datasets used both in the works that are being replicated as
well as the dataset used in the scope of this thesis. Doing both is important because (as
explained in Section 2.1.1), to really know if an algorithm is a good choice for a task, it
must be ensured that it does not only work on a special kind of dataset due to a special
property that it happens to have. So, we will first compare all datasets to see if there are
important differences between them, as for example in its structure, size or just general
logic.

Derrac & Schockaert [1] used their algorithm to create conceptual spaces for three do-
mains: movies, placetypes and wines. Accordingly, they created corpora for these three
domains. The two considered follow-up works both re-used the datasets for movies and
placetypes and also created additional datasets respectively. Table 3.3 shows a complete
comparison of all datasets used in any of [1–3], including their origin, properties as well
as associated pre-processing steps.

Comparing dataset properties

This work applies the replicated algorithm to a new dataset, so it is important to check
if the new dataset differs from the originally used ones. To ensure comparability in
algorithm details, this implementation is also run on the placetypes-dataset, and some
of its statistics as well as that of the other two datasets made public by [1], available at

1To achieve reproducibility. Just like this thesis could have been a lot less effort if [1–3] did that
instead of ambiguous incomplete descriptions.

27 3.1. Datasets

https://www.cs.cf.ac.uk/semanticspaces/. Let us first compare some key statistics
of them, before looking into two of them individually in the next section.

A very distinctive difference of the datasets is their size: the movies-dataset consists
of 15.000 entities, placetypes of 1383, and wines of only 330. Just as important as the
number of entities is however also the length of their associated text-corpora. Figures 3.2
and 3.4 show a histogram of the distribution of text lengths for the Siddata-dataset and
placetypes-dataset respectively, and Table 3.1 summarise corpus size and distribution
of text lengths per entity for all handled datasets. Note that the Siddata-dataset is
listed twice, once including all available entities and once after filtering out those whose
description was shorter than 80 words.

Entities Words per Entity
Unique Non-Unique

5th Med 95th 5th Med 95th

movie reviews 13 978 565 1358 5 510 962 3179 38 378
place types 1383 159 2215 18 117 2378 55 422 886 233

Siddata (all) 26 346 19 60 169 22 71 239
Siddata (≥ 80 words) 11 601 63 99 211 83 124 323

Table 3.1.: Sizes of the text-corpora of the Siddata-dataset and those of [1]. The columns
Words per Entity list thresholds for the 5th, 50th, and 95th percentile.

1 2 5 25 50 100 500 1000 |C|/10 |C|/4

Siddata 163 285 80 802 35 697 9702 5535 3059 570 210 23 2
placetypes 746 180 428 810 182 906 41 320 21 833 11 166 1452 183 8047 2669

movies 589 727 279 429 128 850 55 429 39 976 28 768 11 431 6931 1786 332

Table 3.2.: Words that exceed various df thresholds for the Siddata, placetypes and
movies datasets. In [1], the candidate-threshold for placetypes was 50, and
the threshold for movies 100. The last columns are relative to the dataset-size
(|C| = number of entities).

It is obvious that even though the number of Siddata-entities is comparable to the bigger
of [1]’s datasets, the number of unique words in the individual texts associated with the
entities are two orders of magnitude shorter than both. As the algorithm does not rely
on deep learning, this does not mean that the dataset is unsuited for it, but let us explore
how the distance in their lengths can be explained and what consequences this has.

The works considered in this replication [1–3] all use the movies- and the placetypes-
dataset to evaluate their methods. The former consists of the concatenation of all avail-
able reviews for 15.000 movies from IMDB,2 grouped by the movie the reviews are for.
The placetypes-dataset is created from a collection of tags that belong to photos up-
loaded to the photo sharing platform Flickr3 that co-occur with other tags that denote
one of several placetypes.

2https://www.imdb.com/
3https://www.flickr.com

https://www.cs.cf.ac.uk/semanticspaces/
https://www.imdb.com/
https://www.flickr.com

3.
M

ethods
28

dataset contents preprocessing size classification classes candidate word threshold

movies4 [1–3] grouped-by-movie-concatenated
reviews for movies

• removed stop-words5

• lower-cased text
• removed diacritics
• removed punctuation

[1]: 15000 movies
[2, 3]: 13978 movies

• genre (23 classes)
• plot keywords (eg. suicide, beach) (100 cls)
• age-rating certificates (6 classes)

df ≥ 100
→22 903 candidates
variable-length n-grams considered

place types4 [1–3] Tags of Flickr-photos that are also
tagged with a place-type None 1383 place types

• category from GeoNames (7 classes)
• category from Foursquare (9 classes)
• category from OpenCYC (93[1]/20[2, 3] cls)

df ≥ 50
→21 833 candidates
(all words from the BoW)
n-grams: squashed all words of a tag

wines46 [1] grouped-by-wine-variant-concatenated
reviews for wines

• removed stop-words5

• lower-cased text
• removed diacritics
• removed punctuation

330 wine-varieties not performed
df ≥ 50
→around 6k candidates
variable-length n-grams considered

20 newsgroups7 [2] posts partitioned roughly even
across 20 different newsgroups

• Headers, footers and quote metadata removed8

• removed stopwords (using NLTK’s corpus [49])
• lowercased text
• candidate terms: all textual and numerical tokens

18446 posts • newsgroup post belongs to (20 cls) ≥ 30 occurences

imdb sentiment9 [2] highly polar movie reviews
for binary sentiment classification

• removed stopwords (using NLTK’s corpus [49])
• lowercased text
• candidate terms: all textual and numerical tokens

50000 reviews • sentiment of the review (2 classes) ≥ 50 occurences

Bands [3] All Wikipedia pages (≥ 200 words) whose
WikiData semantic type is "Band"

• removed HTML-tags and references
• "standard preprocessing strategy" [35, p. 137]
• removed stopwords (using NLTK’s corpus [49])
• POS-tagging and keeping only nouns and adjectives
• remove words with a rel. df > 60% or abs. df < 10

11448 bands
• Genres (22 classes)
• Country of origin (6 classes)
• Loc. of formation (4 classes)

10 < df < 6869
(all words from the BoW)

Organisations10 [3] All Wikipedia pages (≥ 200 words) whose
WikiData semantic type is "Organisation"

• removed HTML-tags and references
• "standard preprocessing strategy" [35, p. 137]
• removed stopwords (using NLTK’s corpus [49])
• POS-tagging and keeping only nouns and adjectives
• remove words with a rel. df > 60% or abs. df < 10

11800 organisations • Country (4 classes)
• Headquarter Loc. (2 classes)

10 < df < 7080
(all words from the BoW)

Buildings10 [3] All Wikipedia pages (≥ 200 words) whose
WikiData semantic type is "Building"

• removed HTML-tags and references
• "standard preprocessing strategy" [35, p. 137]
• removed stopwords (using NLTK’s corpus [49])
• POS-tagging and keeping only nouns and adjectives
• remove words with a rel. df > 60% or abs. df < 10

3721 buildings • Country (2 classes)
• Administrative loc. (2 classes)

10 < df < 2233
(all words from the BoW)

Table 3.3.: All datasets used by any of [1–3]. Citations behind the dataset name denote which author used it. Other listed properties include dataset sources
(where available), contents, sizes, the respectively used preprocessing-methods and candidate-word-thresholds, as well as the classes considered
in the evaluation of the derived explainable classifiers.

4https://www.cs.cf.ac.uk/semanticspaces/
5http://snowball.tartarus.org/algorithms/english/stop.txt
6https://snap.stanford.edu/data/web-CellarTracker.html
7http://qwone.com/~jason/20Newsgroups
8Using the scikit-learn python package, see https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html
9http://ai.stanford.edu/~amaas/data/sentiment/ [45]

10Originally created in and for [35]

https://www.cs.cf.ac.uk/semanticspaces/
http://snowball.tartarus.org/algorithms/english/stop.txt
https://snap.stanford.edu/data/web-CellarTracker.html
http://qwone.com/~jason/20Newsgroups
https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html
http://ai.stanford.edu/~amaas/data/sentiment/

29 3.1. Datasets

Other datasets considered in the works of [1–3] include wine reviews, posts to certain
newsgroups, and another dataset created from IMDB-reviews (see Table 3.3).

All of these datasets have in common that they are made up from a collection of inde-
pendent texts or tags, created by different people. This means, that the more obvious
or distinct a property of the respective entity is, the more often words describing that
property will be used as tag or as part of the review. For example, a movie that is
scary to a lot of people will lead to many reviews mentioning that, which means that
the word scary (or other words commonly co-occuring with it) will have a high count
in the concatenation of all these reviews. The algorithm from [1] heavily leans on this
property by using the (relative) frequency of certain words as signal for the importance
of the concept they may refer to.

The Siddata-dataset unfortunately does not share this property, as the texts that belong
to an entity are not collected from different independent texts, but solely from the de-
scription of that entity. It may of course be roughly the case that the more mathematical
a course is, the more often the word math occurs in its description, but the correlation
is likely not as prominent as in the aforementioned datasets. It should however be noted
that [3] also used the algorithm on three datasets where the description for an entity
was collected from its Wikipedia11-article, which also does not contain the described
duplication of words.

Other considered datasets One of the goals was to build an adaptable architecture, so
we also want to check if it can quickly and easily be applied to other datasets. For that, a
dataset of 1002 short stories from project guttenberg12 and one of 100 000 coursera course
reviews13 were created. The former is similar to our dataset because it is also not made
up as concatenation of multiple invididual texts. The latter is made up from reviews like
the aformentioned ones, but from the educational domain. These were created primarily
to test the architecture, and no results will reported or analysed for these datasets, as
that would go far beyond its scope and intended length.

3.1.1. Siddata-courses

The main goal of this thesis was to create a conceptual space of courses, automatically
generated by course descriptions. For that, a dataset of courses and their descriptions
was obtained as export from the Stud.IP system as used at the universities of Osnabrück,
Hannover and Bremen.

Resource Type and Origin

As explained in Section 2.2, the dataset itself is collected collected from all courses
that are present in the Stud.IP systems of the universities of Osnabrück, Hannover and
Bremen and is crawled by the Siddata-DSA. Additionally, it contains a small amount of
MOOCs and other OERs and resources collected by web crawers. The distribution of
types (if an entity is collected from the LMS, an OER or another web source) is depicted

11https://en.wikipedia.org/
12https://www.kaggle.com/datasets/shubchat/1002-short-stories-from-project-guttenberg
13Source: https://www.kaggle.com/septa97/100k-courseras-course-reviews-dataset, Explor-

atory Analysis: https://www.kaggle.com/roshansharma/coursera-course-reviews

https://en.wikipedia.org/
https://www.kaggle.com/datasets/shubchat/1002-short-stories-from-project-guttenberg
https://www.kaggle.com/septa97/100k-courseras-course-reviews-dataset
https://www.kaggle.com/roshansharma/coursera-course-reviews

3. Methods 30

in Figure 3.1 among the distribution of other metadata. Almost all educational resources
in the dataset are Courses, which refers to regular events at the respective university. As
the figure shows, there are also PDF-documents in the dataset, but again the amount is
neglibile. Roughly 75% of all resources in this dump are courses from UOS, another 23%
courses from the universities Bremen and Hannover, the rest split among other formats.

The data used here is collected from three separate dumps, created at different protype
stages of the DSA. The dumps had a high overlap in resources, however had different
metadata attached to them, requiring careful merging for the creation of the individual
raw datasets. So far, neither the datasets nor any of its underlying dumps have been
published.14

2021 Dump 2022 Dump

Stud.IP

O
E
R

Course

P
D

F

u
n
k
n
o
w

n

UOS other

de en

o
t
h
e
r

0 5k 10k 15k 20k 25k

Source

Type

Format

University

Language

PDF,

unknown

OER,

web

Educ.

Res.

Figure 3.1.: Distribution of metadata in the raw Siddata-dataset. Languages are reported
as detected (see B.1), other metadata as it was available in the dumps.

Resource Content

Considering that most of the data are Stud.IP courses, in the following only this format
will be described.15 The most relevant properties for the cause in this thesis are a courses’
title, possibly its event number, and its description. The description consists of whatever
the creator of the course wrote to describe it to aspiring participants. These descriptions
differ a lot in their informativeness, and importantly they are no concatenation of reviews
or similar from multiple persons but a continous text description. The distribution of
the number of words per description is depicted in Figure 3.2, showing that 98% of
descriptions consist of maximally 339 words.

Duplicates There are duplicates in the dataset: Often, the same course is offered over
multiple years, which is mapped on to separate resources in the raw dataset. Unfor-
tunately, there is no bijective mapping of course titles or event numbers, meaning that
the same event number sometimes refers to the same course over the span of multiple
years.16 The name of courses also may change throughout the years it is offered. A very

14But the raw data is available for members of the SIDDATA-project at https://git.siddata.de/
jschrumpf/study_behavior_analysis (requires authentification), and the dataset-creation notebooks
for this dataset can be found at https://github.com/cstenkamp/MAAnalysisNotebooks/tree/main/c
reate_datasets/siddata

15As the final dataset will only consider resoures with a text-length of at least 80 words, the propor-
tionality of courses is even more pronounced (see Table 3.4)

16see Table C.1

https://git.siddata.de/jschrumpf/study_behavior_analysis
https://git.siddata.de/jschrumpf/study_behavior_analysis
https://github.com/cstenkamp/MAAnalysisNotebooks/tree/main/create_datasets/siddata
h
t
t
p
s
:
/
/
g
i
t
h
u
b
.
c
o
m
/
c
s
t
e
n
k
a
m
p
/
M
A
A
n
a
l
y
s
i
s
N
o
t
e
b
o
o
k
s
/
t
r
e
e
/
m
a
i
n
/
c
https://github.com/cstenkamp/MAAnalysisNotebooks/tree/main/create_datasets/siddata
r
e
a
t
e
_
d
a
t
a
s
e
t
s
/
s
i
d
d
a
t
a

31 3.1. Datasets

≥20 ≥50 ≥200 ≥500
Source Type Format Uni Lang.

2021 Dump Stud.IP Course UOS de 18203 14551 2671 100
en 1950 1773 616 53
other 681 612 100 1

2022 Dump Stud.IP Course UOS de 1009 807 188 5
en 132 123 70 13
other 20 14 1 -

other de 5246 4353 1246 53
en 771 622 260 25
other 63 46 9 2

Educational
Resources

OER PDF other de 51 22 2 -
en 1 - - -

unknown other de 125 50 6 -
en 7 4 - -

Stud.IP Course UOS de 993 684 121 5
en 236 163 53 2
other 168 130 91 25

other de 737 514 145 23
en 303 258 89 23
other 33 23 3 -

Udemy-
MOOC

Course other en 22 - - -
other 3 - - -

MOOC other en 8 - - -
web unknown other de 48 3 - -

en 1 - - -
sum 30811 24752 5671 330

Table 3.4.: Metadata of the Siddata-dataset. Languages are reported as detected (see
B.1), other metadata as it was available in the dumps. Column titles encode
the number of entities whose description has at least 20, 50, 200 or 500 words.

prominent characteristic is for example that courses cancelled due to the COVID-19-
Pandemic prepended an information such as !!Fällt aus!! to its title, or that a few
sentences explaining that the new iteration will be performed digitally. Some techniques
have been used to merge possible duplicates based on their title, number and description,
however not all duplicates could be eliminated. 17 If the same title was connected to
different descriptions in the dataset, the sentences of all duplicating samples were token-
ised, concatenated and duplicates removed, such that the resulting description contained
every sentence of the original description exactly once. This means that in cases where
sentences were only slightly changed, both variants will be present. This is possible
because the algorithm only relies on the Bag-of-n-grams representation for these texts
(Section 2.5.1), which is weighted and ignores word order.

Possible Classification Targets To evaluate the usefulness of our algorithm to recom-
mend resources from this dataset, we will test how good the extracted semantic directions
predict human classes extracted from the data. For that we need classification targets

17Many such duplicates were mapped towards similar embeddings by the algorithm, see Section 4.3.

3. Methods 32

0 50 10
0

15
0

20
0

25
0

30
0

33
9-

41
26

Number of Words

0
200
400
600
800

1000
1200

Co
un

t o
f D

es
cr

ip
tio

ns

Figure 3.2.: Distribution of description-lengths of the Siddata-dataset. The rightmost
bar represents the longest 2% of descriptions.

that can be extracted from the data. As stated above, those resources that are courses
from the university of Osnabrück also have their course number given. The first digit
of that encodes the faculty a course belongs to, making the faculty an easily obtainable
classification target for 75% of the entities.18 The distribution of the faculties is depicted
in 3.3. If the dataset quality should turn out to be very low, it would also be possible
to use a classifier that predicts the faculty from its description, and only use those ones
that were correctly classified by it, which theoretically would ensure that only courses
whose description is meaningful would be obtained.

1 2 3 4 5 6 7 8 9 100

1000

2000

3000

4000

Number of Courses per Faculty
Sozialwissenschaften
Kultur-/Geowissenschaften
Erziehungs-/Kulturwissenschaften
Physik
Biologie/Chemie
Mathematik/Informatik
Sprach-/Literaturwissenschaften
Humanwissenschaften
Wirtschaftswissenschaften
Rechtswissenschaften

Figure 3.3.: Distribution of faculties for those courses at University of Osnabrück.

Other Metadata Apart from title, description and course number, the individual re-
sources may have some additional properties. Among these are format, type and source
as meta-information encoding their origin and type. As most of the resources come from
an older dump, these are not given for all. A small fraction of rerources additionally lists
subjects, which is a list of keywords describing the course. This is very relevant informa-
tion for the algorithm, however as only a tiny fraction of entities lists it, the information is

18Which is a lot more than there are for the placetypes-dataset, see Figure C.1

33 3.1. Datasets

just appended to the respective description, just as the subtitle of a course. Next to some
other information only given for resources that are not of the format Course, the only
abundantly available metadata is the DDC-Code that was assigned to it by SidBERT
(see Subsection 2.4), which may be used as additional classification-target.19 Besides
this, there are unfortunately no further obvious candidates to generate prediction-targets
from. This problem was discussed with the author’s supevisors, however the process was
complicated due to privacy concerns, anonymization and inappropriate data formats.20

Implications There are quite a few duplicates in the dataset, the descriptions are shorter
and different than the original ones, and many descriptions seem to be short and unin-
formative. The low dataset quality is a reason to later look at our results with a grain
of salt: If for examply quantitatively examining if different courses are mapped onto the
same embedding, it must also be qualitatively looked at these samples, as it may be the
case that they are in fact multiple entries of the same course and thus correctly detected
duplicates.

Low Quality Samples Unfortunately, the dataset contains many samples that have
only very short and uninformative descriptions. The analysis-script in the repository21

does some exploration regarding length and quality of the data. Low-quality descrip-
tions include: "BA/MA Hauptmodul" - "Bestandteile:Vorlesung + Übung" - "Dozent
Dr. Michael Wicke" - "Siehe Gruppe A" - "s. Modulbeschreibung" - "Literatur:wird
noch bekannt gegeben"

3.1.2. Placetypes

Because the Siddata-dataset differs in many regards from the datasets used in [1–3], it
makes sense to compare the results of the given pipeline on that dataset to the results
of [1–3]. To be able to compare the results achieved here with theirs, one of the datasets
used by all of their papers was considered as well. Comparing on an original dataset
also has the benefit of allowing to sanity-check if the implementation is correct: If the
performance achieved on this dataset is comparable to the performances of [1–3] whereas
the peformance for the Siddata-dataset is considerably worse, there is strong indication
that the quality or quantity of the dataset is insufficient for acheiving high-quality rep-
resentations. Conversely, if our algorithm applied to the dataset used in [1–3] produces
results that fall considerably short of those reported in literature, it is likely that there
is a fault in our implementation.

There are two datasets used by all three authors: placetypes and movie-reviews (see
Table 3.3). Both of the datasets are available in preprocessed form22 [1]. It was originally
planned to use both of the datasets as basis for comparison, however unfortunately it is
impossible to recover the form of it as originally used by Derrac & Schockaert [1]: The

19For that, however, one has to keep in mind that these were also only produced by a ML-algorithm
which has no perfect accuracy.

20One plan was to get the semester of a courses’ enrolled students, but this data is stored timeless,
and the mapping of the participation year is obfuscated through k-anonymization.

21https://github.com/cstenkamp/MAAnalysisNotebooks/blob/main/create_datasets/siddata/
data_exploration_Siddata2021.ipynb

22https://www.cs.cf.ac.uk/semanticspaces/

https://github.com/cstenkamp/MAAnalysisNotebooks/blob/main/create_datasets/siddata/data_exploration_Siddata2021.ipynb
https://github.com/cstenkamp/MAAnalysisNotebooks/blob/main/create_datasets/siddata/data_exploration_Siddata2021.ipynb
https://www.cs.cf.ac.uk/semanticspaces/

3. Methods 34

original texts of the reviews are not available, but only their respective bag-of-1-grams
(BoW) - even though the authors explicitly state that they worked with variable-length-
n-grams. Even though the provided list of candidates contains n-grams, it is impossible
to recover which of the entities contained it. While the algorithm can still be run only
for the 1-grams, the results are not comparable with the original ones anymore.23

0 13
20

00
40

00
60

00
80

00
10

00
0

12
00

0
12

81
9-

11
33

90

Unique Words

0

25

50

75

100

125

150

175

200

Nu
m

be
r o

f E
nt

iti
es

Figure 3.4.: Distribution of unique words per entity for the placetypes dataset.

In this work, we will only compare the results w. r. t. the GeoNames24 and Foursquare
taxonomies, because the level used for the openCYK taxonomy was not sufficiently de-
scribed by Derrac & Schockaert [1]. For the GeoNames taxonomy, 403 of the placetypes
are split into 9 categories. These labels are annotated to a t-SNE plot genreated from
Derrac & Schockaert’s [1] uploaded data in Figure C.1 in the Appendix. In the case of
Foursquare-labels, 391 placetypes are split among 9 (different) categories as well.

The dataset was created from tags of images shared flickr25. A picture was considered
to be of a certain type, if one of its tags is the name of that type according to one of the
aforementioned taxonomies, and the BoW-representation considered for this algorithm
was created from all other tags of these pictures. In contrast to our dataset, this one
was specifically created by Derrac & Schockaert [1] to test their claims of the algorithm
implemented here. Preliminary inspection of the dataset has however revealed that it
however still contains many duplicates, such as the entries boat yard and boatyard, or
skate park and skatepark, among others.

3.2. Algorithm

Let us finally go into detail about the main algorithm. The implementation of this thesis
replicates and extends the algorithm proposed by Derrac & Schockaert [1] with some novel
contributions to deal with the given dataset. Further, some improvements from the works
of Ager et al. [2] and Alshaikh et al. [3] are incorporated, who also replicated and improved
the original algorithm and published together with Prof. Steven Schokaert. According to

23As all of the [1–3] share an author, it is assumed that [2, 3] had access to the full version of the
dataset and did not share the stated problem.

24http://www.GeoNames.org/export/codes.html
25https://www.flickr.com/

http://www.GeoNames.org/export/codes.html
https://www.flickr.com/

35 3.2. Algorithm

our evaluation of the field, these two papers provide some useful improvements in several
aspects, as they apply the algorithm to different datasets, suggest more straight-forward
ways of evaluating their performance, and help in understanding important concepts.
That we are focusing on only those three papers should by no means imply that they
are the only ones that were considered and influcenced this implementation,26 however
in contrast to the other pertinent literature these two works do not substantially divert
from the algorithm’s core principles.

It is important to keep in mind that the algorithm is no rigid monolith but modu-
larly consists of several components, such as dimensionality reduction. Many of these
components do not require specific algorithms, and [1–3] also experiment with different
components. The exact system for these components may be exchanged, and in the
following these exchangeable algorithms are also referred to as hyperparameters. Note
further that while this thesis mostly replicates the work of Derrac & Schockaert [1], the
following will describe the algorithm as implemented here, which differs in some details
from the original work. For the sake of clarity, very specific implementation details will
be left out in the following description, as however reproducibility is an important aim
for us, implementation details are available in Appendix B and linked where relevant.

Core Algorithm

The main goal of the algorithm is to unsupervisedly use text-corpora associated with
the considered entities27 to embed these into a vector-space where the axes correspond
to human concepts/properties.28 This is referred to as feature-based representation: A
high-dimensional vector that numerically encodes the degree (protoypicality) to which
the entity corresponds to a number of appropriate dimensions. This is generally referred
to as Conceptual Space and can be used as basis for explainable reasoning.

The general idea to achieve that is as follows: First, the entities are embedded as fixed-
dimensional vectors. To allow for the types of reasoning from Section 2.3.2, it is embedded
into metric spaces where the concepts of direction and distance are well-defined. Derrac
& Schockaert’s [1] original algorithm uses MDS (see 2.5.1) for this matter, which enforces
metric distances. [2, 3] both soften this requirement and also use document embedding
techniques such as Doc2Vec and averaged GloVe [50] embeddings. Additionally, words
or phrases from the text are extracted as candidates for the names of the semantic di-
mensions. The underlying assumption is that “words describing semantically meaningful
features can be identified by learning for each candidate word w a linear classifier which
separates the embeddings of entities that have w in their description from the others” [3,
p. 3574]: The better the performance of that classifier according to a chosen metric, the
more evidence there is that w describes a semantically meaningful feature. In a final step,
the candidate-words are clustered according to their similarity to find a fixed set of se-
mantic directions. A representative term for the directions is selected as dimension name,

26See Section 2.4
27From now on, the term entities refers to the sample described by one text from the corpus (de-

scription, concatenated reviews, ...) from a certain domain. The corpus accordingly defines the domain:
educational resources, movies, ...

28Concepts and Properties explicitly refer to what is defined in Criterions C and P, see 2.3

3. Methods 36

and the entities are re-embedded into a new space comprised of these dimensions, where
the individual vector-components correspond to the ranking of an entity with respect to
these dimensions.

The rest of this section goes into further detail for each of the individual algorithm
components. Further, configuration files to enable exactly the respective components of
the papers [1–3] for the codebase of this thesis are listed in Appendix B.3.

3.2.1. Algorithm Steps

This section describes the steps how to create an interpretable vector-space from the
text corpus in detail. For that, we will explicitly elaborate on the parameter choices that
branch up at every step for this specific implementation.

1. Preprocess the corpus with default techniques and create a Bag-of-ngrams rep-
resentation (2.5.1) of the texts.

2. Extract Candidate Feature Names from words/n-grams of the corpus.
3. Embed all Entities into a fixed-dimensional vector space with demanded prop-

erties that captures the respective semantics.
4. Filter Candiate Features by training a linear classifier for each candidate that

seperates the vector representations of the entities that contain the term from those
that do not. If a specified metric for this classifier is sufficiently high, assume that
the candidate term captures a salient feature - its direction is then characterized
by the orthogonal of the classifier’s separatrix.

5. Cluster/Merge the candidates and calculate the feature direction for each
cluster from its components, and (optionally) find a representative cluster-name.

6. (optionally) Post-process the candidate-clusters.
7. Re-embed the entities into a space of semantic directions by calculating their

distance to each of the feature direction separatrices.

This techniques first embeds the collection of texts into a vector space, to afterwards
extract important features from this space using linear classifiers. The second step is an
original idea of [1], however creating vector space embeddings from texts is a very popular
technique, used for many tasks in NLP [12, 13, 39, 41, 43]. This implementation relies
on classical creation of the VSM, for which the general creation process was explained in
Section 2.5.1. The steps Build the Frequency Matrix, Transform Raw Frequency Counts
and Smooth the Frequency Matrix are squashed into the preprocessing and embedding
of entities. When extracing candidate features, their frequencies must additionally be
quantified - which may differ from the quantification when embedding all entities.

An explicit and simple implementation compliant with each step could be a simple word
tokenization and count to generate a bag-of-words (step 1) where each sufficiently fre-
quent word is used as candidate (step 2). A dissimilarity matrix of the individual BoW-
vectors is compressed using MDS (step 3). A SVM calculates the accuracy for each
candidate (step 4), and k-means-clustering on the 500 top-scoring terms subsequently
creates 100 clusters and averages their directions (step 5). The distance to each of the
hyperplanes is calculated (step 6), yielding new space for the entities. The sequence of
steps is also given as pseudocode in Appendix D.

37 3.2. Algorithm

raw_descriptions

description_languages

 DATASET: siddata2022
title_languages subtitle_languages

pp_descriptions

 DEBUG: False
 TRANSLATE_POLICY: onlyorig
 PP_COMPONENTS: mfauhtcsldp

 LANGUAGE: de
 MIN_WORDS_PER_DESC: 80

candidate_terms

 EXTRACTION_METHOD: tfidf

postprocessed_candidates

filtered_dcm

 DCM_QUANT_MEASURE: count

dissim_mat

 QUANTIFICATION_MEASURE: ppmi

featureaxes

 CLASSIFIER: SVM
 KAPPA_WEIGHTS: quadratic

clusters

 PRIM_LAMBDA: 0.5
 SEC_LAMBDA: 0.2

 CLASSIFIER_SUCCMETRIC: kappa_digitized_onlypos_2
 CLUSTER_DIRECTION_ALGO: reclassify

embedding

 EMBED_DIMENSIONS: 200
 EMBED_ALGO: mds

Figure 3.5.: Dependency-graph of the implementation, displaying the individual steps of
the algorithm as well as their dependencies and where selected important
parameters are first used.

The distinction of steps is not always this rigid: Instead of creating a dissimilarity matrix
followed by dimensionality reduction, [2, 3] use neural word- or document embeddings.
We will come back to other ideas ideas when discussing future research opportunities
(Section 5.4) by listing what other ways of fulfilling each respective step could have been
considered.

Figure 3.5 shows an automatically exported dependency-graph, displaying the individual
steps of the algorithm as done in the accompaning code, also showing where selected
important parameters are first used. As explained in Section 3.3, the modularity of the

3. Methods 38

provided architecture allows individual components to be exchanged as needed and run
in parallel.

Preprocessing

Before looking at the steps in turn, it should be noted that even the preprocessing
does not work on completely raw data, but on curated and processed corpora. This
processing is however not considered part of the algorithm, as it is very specific to the
respective datasets and manual dataset exploration, tweaking settings such that they are
best for each corpus separately. The preprocessing for the Siddata-dataset is described
in Section 3.1.1 and its implementation is done in separate Jupyter Notebooks.29 In the
considered literature, the preprocessing is not considered part of the algorithm at all.
Their implementations start from already fully processed datasets available as bag-of-
words, each separately processed. Details of their individual processing per dataset is
listed in Table 3.3. By incorporating the preprocessing into the pipeline, this work aims
to increase adaptability and reproducibility, and also allows to experiment with different
techniques such as translation or lemmatization or how duplicate entities with different
associated texts are merged.

A common prerequisit for NLP algorithms is to pre-process the text corpus. The pre-
processing itself consists of multiple independent components chained after each other.
Which components are necessary also depends on the processed dataset - as for example
the placetypes-dataset consists of a collection of tags instead of full sentences, token-
ising sentences or removing stop words becomes irrelevant. Other datasets may require
additional cleaning or are already available in preprocessed form.

Translation As the main considered dataset of university-courses is highly multilingual
(see Figure 3.1), one of the first questions that needs to be addressed is how entities of
different languages are handled. The algorithm consists of classical language processing
algorithms such as comparing BoW representation of the entities, which means that the
same text in two different languages may result in maximally different representations
(see Section 2.5.1). Because of this, before any other processing, the languages of each
entity is checked, such that those of languages other than the demanded may be either
translated, left out or used anyway. For details about the translation, it is referred to
Appendix B.1.30

Components The following components are developed for the preprocessing, every one
of which can be individually enabled or disabled:

• Prepend title and/or subtitle to the entities’ associated text
useful for the Siddata-Dataset, as the titles are often quite long and more

descriptive than their descriptions
• Remove HTML-Tags from texts

useful for the Siddata-dataset, as it includes descriptions for MOOCs which
are crawled from websites and often contain such

29Such as https://github.com/cstenkamp/derive_conceptualspaces/blob/main/notebooks/
create_datasets/Preprocess_Siddata2022.ipynb

30It should be noted that professional automatic translation is costly and thus not all texts are
available in all languages.

https://github.com/cstenkamp/derive_conceptualspaces/blob/main/notebooks/create_datasets/Preprocess_Siddata2022.ipynb
https://github.com/cstenkamp/derive_conceptualspaces/blob/main/notebooks/create_datasets/Preprocess_Siddata2022.ipynb

39 3.2. Algorithm

• Tokenise sentences
such that n-grams across sentences are not considered

• Lower-case all words
reduces the amount of individual words and ensures that words at the

beginning of sentences are mapped correctly
• Remove stop-words / frequent phrases
• Tokenise words

means splitting at the word-boundary, resulting in a list of words. Order
must be kept in case n-grams are to be extracted.

• Lemmatize words
• Remove diacritics

Diacritics are glyphs added to basic letters, such as accents or German
Umlaute. Removing them converts for example the letter ä to an a

• Remove punctuation

The above can be done either be done with proprietary code for all of these steps,31 or
using sklearn 32 CountVectorizer (which is faster, but less configurable), as [2] claim
to have done.

On Stop-Words Removing stop-words from the texts is useful because it makes the res-
ulting frequency more compact and thus less computationally intensive, and stop-words
generally have very discriminative power, meaning their occurence among the entities is
arbitrary, just making hte emeddings more noisy (cf. Section 2.5.1). There are however
reasons to not remove them: Two words that are considered stop-words may posess rel-
evant semantic content (such as a Fällt aus in a course title), and stopwordslists are
often incomplete and of low quality [51]. For these reasons it is also possible to instead
remove n-grams that exceeded a certain frequency (df).

On Lemmatization The languages most prevalent in the considered datasets are con-
sidered agglomerative, which means word stems are changed by the addition of affixes
and suffixes. Consequently, the same word may be present in multiple different forms,
which modelled as completely dissimilar vectors in the present BoWs-approach. Lem-
matization is the process of mapping different forms of these words onto the same stem.
Considering that the Siddata-dataset consists of far fewer words than the others, this has
important implications. For the german descriptions, this implementation relies on the
HanTa lemmatizer [52].33

The result of this step is a bag-of-ngrams representation for each entity (see Section 2.5.1).

Extract Candidates

The final result of the algorithm is a metric space in which the individual dimensions (fea-
tures/interpretable directions) correspond to natural-language concepts and attributes.
The candidates for these features are verbatim phrases extracted from the text-corpus of
the entities, which are subsequently filtered and merged as necessary.

31Mostly relying on the python package nltk [42]
32https://scikit-learn.org/stable/
33https://textmining.wp.hs-hannover.de/Preprocessing.html#Lemmatisierung

https://scikit-learn.org/stable/
https://textmining.wp.hs-hannover.de/Preprocessing.html#Lemmatisierung

3. Methods 40

In Derrac & Schockaert’s [1] work, the selection of phrases to be extracted depends on
the dataset: For placetypes-dataset, all sufficiently frequent34 1-grams35 were considered.
For the other two datasets, they applied a POS-tagger that extracted all sufficiently
frequent34 adjectives, nouns, adjective phrases and noun phrases, assuming that
adjectives would correspond to gradual properties (e. g. violent, funny) and nouns to
topics (e. g. the genre) [1, Sec. 4.2.1]. Also, the authors ensured that the number of
extracted candidates for both datasets is roughly equal, getting around 20 000 candidates
for movies and placetypes.

For this step, the implementation of this thesis differs from the original algorithm, as
both taking all words as candidate and running a POS-tagger led to suboptimal results in
previous experiments, which indicated that the robustness of the algorithm is increased if
less candidates are considered in earlier steps. This will be further argued and elaborated
in the discussion. To ensure comparability to these works however, in the case of the
placetypes-dataset the original method of taking all words with a term-frequency of at
least 50 was used. Similar techniques for the Siddata-dataset were also considered, but
in constrast to the placetypes-dataset it is also important to consider various-length
n-grams.

In our implementation the candidate-extraction is split into four subsequently excecuted
substeps, because depending on the algorithm used to extract the candidates the runtime
of the individual components is comparably long and some settings are only relevant in
later substeps. The steps are:

• Extracting Candidate Terms
• Postprocessing the Candidates
• Creating the document-term matrix for the candidates and applying a quantifici-

ation

As visualised in Figure 3.5, these substeps only depend on the preprocessed descriptions,
which means they can be run in parallel to the creation of the embedding if e. g. running
on compute clusters.

Three main techniques are implemented to extract candidates from the text-corpus. Ir-
respective of the algorithm, only words with a sufficiently high df are extracted, which
is important to ensure that the classifier that determines its meaningfulness has enough
samples in both clases. This means that the minimal freqeuncy can be calculated from
the dataset size: In [1], the minimal frequency for the movies-dataset with 15 000 entities
was only 100, meaning that the algorithm even works if only 0.6% of samples are in the
positive class.

By frequency: consider all phrases that exceed a specified document-frequency (like [1]).
By a quantificiation: consider all phrases that are prominent by some notion of import-

ance , such as the PPMI or tf-idf-score. Note that the respective scores depend on
the combination of document and term, such that candidates may be extracted for

34The respective thresholds are listed in Table 3.3 as “candidate word threshold”.
35Note that in the case of the placetypes dataset, a 1-gram corresponds to all merged words of a tag.

41 3.2. Algorithm

some documents. Of course, all their occurences are considered in the creation of
the frequncy matrix.

Using KeyBERT [53]: consider phrases whose BERT-embedding [15] is most similar to
the text they are in.

Using KeyBERT results in candidate terms that are most appealing in qualitative in-
spection, however it is also most computational demanding, techniques and requires
substantial amounts of post-processing for the resulting phrases. More details on Key-
BERT and how it is incorporated into the algorithm are given in the implementation are
given in Appendix B.1

Finally, a document-term matrix is created from the postprocessed candidates, containing
the frequency for each candidate-phrase in each entity. The creation of this frequency
matrix mirrors the process described in Section 2.5.1, however only for the extracted
words. After filtering this matrix to ensure that only candidates with a minimal df or stf
are considered, a quantification is applied as described in Section 2.5.1. Available Quan-
tifications include raw count, binarization36, tf-idf or PPMI. We expect that expressing
the relation of terms and documents by something else than the raw count will prove
especailly useful for the Siddata-dataset: As it does not consist of concatenated reviews
but short descriptions, each individual word will only occur a few times per description.
Because of that, a rank induced from the count will be not very meaningful when later
comparing it to the ranking induced by the classifier.

Generating Vector Space Embeddings

In this step, the individual entities are embedded into a fixed-dimensional vector space,
making up a frequency matrix.37 Neither this nor the frequency matrix from the previous
step will used to finally calculate similarities on, but both are interim results to get the
dimensions necessary for these similarities.

Embedding words, n-grams/phrases or other tokens, as depicted by [39, 41], generally
involves counting the token frequencies, transforming them to get relative frequencies,
and performing dimensionality reduction on the resulting matrix.

So far (step 1), we have counted the token frequencies. Derrac & Schockaert [1] argued
that this space must be Euclidean, such that geometric/algebraic solutions correspond
to commonsense reasoning tasks (see Section 2.3.2). Another requirement is that the
number of dimensions is be chosen as hyperparameter to the algorithm to be able to
find a compromise between compression and expressive power. Because of these two
requirements, they selected MDS for dimensionality reduction.

As stated in Section 2.5.1, MDS calculcates a Euclidean VSM from a set of pairwise
distances. This means that the algorithm first creates a Dissimilarity Matrix that encodes
the distance between all pairs of entities (represented as Bag-of-ngrams representation),
from which subsequently the final embedding is generated.

36When using binarization, all counts are either one or zero. According to Alshaikh et al. [3] this
improves performance, however we could not confirm this.

37The previous step already created a frequency matrix that encodes the relevance of a candidate-
phrase for each entity- this is a spearate one that later serves to encode each document as a vector

3. Methods 42

In this implementation, the dissimilarity matrix is created using distance metrics for the
quantified bags-of-ngrams of the respective entities. Note that this quantifiation does not
need to be the same one as the one used for quantifying the relatedness of the extracted
candidates and the documents.38

Document embeddings If the strict requirement for a metric space is dropped how-
ever, many different algorithms may instead be used at this point - not only different
dimensionality reduction methods for the embedding, but also ones that do not rely on
the distance matrix or even the BoW at all, like document-embedding-techniques such as
Doc2Vec [14] (as e. g. used by [3]). This would not require the count of token frequencies
followed by a quantificiation, but not affect the rest of the algorithm. As, however, doc-
ument embeddings tend to be created on the basis of cosine distance, this will not result
in a Euclidean metric. Alshaikh et al. [3] experimented with this, however it performed
worse than the original algorithm relying on MDS (see Table C.2), which is why this
technique was not futher pursued in this work.

Classical Processing The default way of doing it is, however, to create frequency matrix
counting the token frequencies of each word of an entity and using a quantificiation to
transform these raw counts. In this implementation, the dissimilarity matrix that is
required for the MDS-algorithm created on basis of the normalized angular distances of
the BoWs of the respective entities, which is relates to the cosine distance and is defined
by Derrac & Schockaert [1] as:

ang(ei, ej) =
2

π
∗ arccos

(
vei ∗ vej

∥vei∥ ∗ ∥vej∥

)
(3.1)

=
2

π
∗ arccos(1− cos(vei ,vej))

Finally, the dimensionality of the frequency matrix is reduced using the MDS-algorithm
described in Section 2.5.1. [1] also experiment with the Isomap algorithm, which does
not yield a Euclidean space but one of geodesic distances. As the results for their imple-
mentation are, however, of worse quality than those for MDS, it is not considered further
in this work.

In the publication of Derrac & Schockaert [1], the result of this embedding is used to
experiment with the explainable classifiers (discussed in Section 2.3.2). Due to the usage
of MDS, this space has clearly defined concepts of betweeness and parallesism between the
entities, however it is important to stress that it does not have interpretable dimensions
and is, so far, a plain VSM as described in Section 2.5.1.

Filter Candidates by Classifier Performance

This step brings together the entity embeddings and the extracted keyphrases, to fi-
nally find semantically meaningful directions in the space the entities are embedded in.
For that, classifiers are trained for all previously extracted candidates, each yielding a
Candidate Feature Direction, which are subsequently filtered to detect those correspond-
ing to semantically meaningful features. The algorithm is executed separately for each
candidate term and looks as follows:

38As will be shown in the result, doing so sometimes even outperformed other configurations.

43 3.2. Algorithm

All entities are split into two classes: Those that contain the respectively handled can-
didate term and those that do not. To quantify how well each candidate word captures
semantic content of the entities, a linear classifier is trained to separate the embeddings
of these two classes. The best example for such a classifier is a SVM which does not rely
on the kernel trick. As visually exemplified in Figure B.1, the result is a hyperplane that
best divides the positive from the negative samples. Regardless of the dimensionality
of the original space, this hyperplane has a one-dimensional orthogonal vector. Each of
the entity-embeddings is subsequently orthogonally projected onto it. The distance of
this projection to the plane offset39 is a scalar that encodes the distance to this decision
hyperplane.

This distance encodes how much this point is considered to be protoypical of the re-
spective class by the classifier, for the positive as well as the negative class. Given
that the original space is created based on similarity measures of the entities, the Bag-
Words-Hypothesis (Subsection 2.5.1) states that similar words should have similar words
- meaning maximally dissimilar entities are far apart from positive ones.40 Because of
this, the hyperplane’s orthogonal can be considered an axis that encodes how much each
entity agrees with the feature that is the basis of the classification. Accordingly, a rank-
ing of the entities in terms of this distance should encode their degree of having the
respective feature.

According to Derrac & Schockaert [1], the performance of this classification encodes how
good a candidate serves as feature direction. This can be explained like this: As discussed
earlier (Section 2.5.1), unimportant words are arbitrarily throughout the corpus. Due to
distibutional semantics, topics that are very prominent in some texts but not in others will
influence the position of a texts’ embedding in the vector space more than unimportant
words, which do not signify a latent topic of the corpus. This means, they do not
correlate with other words and do not explain much of the dissimilarity of the embeddings.
Accordingly, unimportant words do not influence the positions of the entities’ embedding
other than being noise. This randomness does not go along with a cluster of positions
in any of the dimensions, as noise gets removed in process of dimensionality reduction.
This makes it reasonable to assume that the a classifier can split entities that contain a
word from those that do not, the more the word is an important topic in the sense that
it explains the dissimilarity in the entities.

Because of this, [1] henceforth only consider those terms as faithful directions that explain
a lot for variance in the data whose performance exceeds a certain threshold.41

Concretely, the score used by [1] to assess the performance is not the accuracy or some
other measure of the binary performance of the classifer, but rather if the ranking induced

39The offset encodes the coordinate where the projection crosses the decision surface.
40To stick with the example of movies, the assumption is that movies that are maximally unscary are

maximally far from the away from scary ones: An entity that has a maximally dissimilar distribution
of words than those that are scary means a maximally maximally dissimilar movie, as little of its latent
topics (see Section 2.5.1) agrees with the scary ones: The more dissimilar, the less scary.

41“if this classifier is sufficiently accurate, it must mean that whether word w relates to object o (i.e.
whether it is used in the description of o) is important enough to affect the semantic space representation
of o. In such a case, it seems reasonable to assume that w describes an important feature for the given
domain.” [2]

3. Methods 44

by the classifier corresponds to ranking of number of occurences42 of that word: The more
these agree, the more we consider this direction “to be a faithful representation of the
term” [1, p. 20]. The reasoning behind that becomes especially clear when considering
the root of their datasets - in the case of reviews or tags it is the case that the more often
a word is mentioned, the more relevant the word is for that entity. In the case of using a
quantificiation such as the PPMI-score, this instead becomes: The more salient relevant
for this entity but not for the others the word is, the higher the score.

A score function compares these rankings, such that only those terms where the cor-
respondance of these rankings exceeds a certain threshold are considered as candidate
directions henceforth. For that, Derrac & Schockaert [1] say that they use the Cohen’s
kappa, which is a metric to compare rankings that can deal with highly imbalanced data.
Considering that for most candidates, most of the entities will be in the negative class this
makes sense.43 Unfortunately, the authors do not give many details on how this scoring
is implemented. While [2, 3] explicitly say that they are interested in the PPMI-scores44,
from [1] it is not even clear if they take the count or the PPMI-score. As that is highly
relevant, we try many different ways of this scoring and report them in the results. We
also compare the overlaps of different kappa-scores to check if the choice is as imporant
as we think it is. Which scores we used and how they are written here is listed in the
implementation details: Table B.1.

Subsequently, only those candidates with high enough scores are considered, and the
othogonals of the respective classifiers considered their respective candidate feature dir-
ection, encoding the degree how much an entity corresponds to this feature. The number
of features with a sufficiently high score can also serve as estimate of how good the
parameter-combination so far was: if not enough well-scoring features were extracted,
the final embedding which is created through only a subset of these features does not
explain much of the original variability in the data.

Merging the extracted candidate-directions

The previous step yielded many basic feature directions that are defined as direction of
the orthogonal vector for the hyperplanes splitting each individual candidate n-gram.
The performance-thresholds are set such that many more directions are generated than
the demanded dimansionality of the final embedding, such that they must be clustered
and merged.

This is done via the following substeps, each of whch will be closer eloaborated:

• Cluster good-performing candidates by their similarity
• (optional) Remove uninformative features
• Recalulate the direction of the cluster
• (optional) Find a representative name for the cluster

42or the PPMI-score, the authers are imprecise in their wording - we will elaborate more on that later
43Ager et al. [2] compare the kappa-score to accuracy and argue that accuracy works better than the

kappa-scores.
44Though the uploaded code of [3] does not compare rankings but raw values.

45 3.2. Algorithm

Clustering the candidates Clustering refers to an unsupervised algorithm that groups
items based on some notion of similarity. In our case the assumption is that semantically
similar concepts have close vectors, which is given due to the BoW-hypothesis that states
that the underlying structure of our dataset is expressed by the usage of related words
(Subsection 2.5.1, 2.5.1).45 As these vectors in principle only encode a direction, their
similarity can be calculated by their cosine distance.

The clustering should reduce the number of features and also ensure that the resulting
directions are different enough. Note that unlike e. g. in Principal Component Analysis
(PCA), the suggested here techniques do not enforce orthogonality, such that the resulting
directions may remain linearly dependent to a certain degree. As in the final embedding
only the projection onto those directions is relevant, it must be ensured that enough
of the data’s original variation is covered by these directions. To ensure that, we follow
Derrac & Schockaert’s [1] suggestion to allow for redundancy by extracting twice as many
directions than the original VSM dimensionality.

The following steps describe the implementation of the original clustering method of
Derrac & Schockaert [1], also used in our work:

First, we consider the best basic features as main directions. For that, we select one of the
scores calculated in the previous step and select all candidates that exceed a threshold
([1] suggest κ ≥ 0.5). To get the directions, we follow the following algorithm:

greats = filter(candidates, 0.5)
directions = greats.argmax()
for nterm in range(ndims*2):

greats = set(greats)-set(directions)
distances = {cand: min(comparer(cand, compareto)

for compareto in directions)
for cand in greats}

directions.append(compares.argmax)

This starts with the best candidate and then iteratively adds the one from the set of
top-scoring candidates that most dissimilar to the set of final directions. The result is
a set of ndims ∗ 2 main directions, which are henceforth considered the Cluster centers.
Subsequently, all leftover terms from T 0.5 as well as all terms from T 0.5 are added to the
respective cluster whose direction they are most similar to.

Derrac & Schockaert [1] used the cosine distance to measure the respective similarities.
This may lead to unexpected situations (discussed in Subsection 5.2.2). As alternative
similarity metric that does not rely on the angle between their vectors, [35] suggest to
use the overlap of the positive-samples of two features as similarity. This was however
not yet implemented in this thesis.

Alternatively, to the described algorithm, is also possible to use the popular k-means
algorithm for clustering, as done by [2]. We do not present results for this approach here
however, as it lead to a substantial increase in runtime, without affecting performance
much. In the development we also noticed that many clusters contain a lot of irrelevant
terms. To alleviate this, we experimented with different techniques, for example setting

45In case of the Siddata-dataset, it may mean that in courses that contain the word computer have a
high chance of also containing program.

3. Methods 46

minimal similarity thershold that must be given for a term to be added to a cluster,
however so far no formal evaluation to test how this affects performance was performed.

Find Cluster-Direction So far, we have a set of clustered canidates terms, each of which
has an individual direction. The final feature-direction must subsequently be found from
the elements of the cluster. For that, [1] and [2] define the cluster centroids as the average
of all (normalized) vectors per cluster. In our experiments, however, we noticed that the
final direction tends to be too much affected by irrelevant cluster-elements. Because of
this, we experimented with other techniques to determine the cluster direction. Other
considered methods include e. g. to 1. just consider the direction of the cluster-center, or
2. to weight the influcence of each cluster-element by their kappa-score.

The best performaning method however was the reclassify-algorithm, which (similar to
[3]) finds the cluster-direction by training a new classifier that splits those entities that
contain any of the elements from the cluster from those that do not, analogous to the
previous step.46. Doing this however often leads to the opposite problem than the previ-
ous step, namely that for many clusters there are almost no entities that do not contain
at least one of the cluster elements. To counter this, we instead trained a classifier to
split the 30% of entities with the highest quantificiations from the 30% of entities with
the lowest quantificiations. A comparison of this algorithm with the method of [1] is
given in the Appendix as Table C.3. As [3] already performed formal experiments with
this that have shown its superior performance, all generated results of this work rely on
this algorithm.

Bad Clusters After these steps, we finally have the vectors that correspond to semantic
directions. However, as there were still clusters of uninformative terms, Alshaikh et al.
[3] have an additional step to remove uninformative clusters. As this bases on another
clustering algorithm used by the author (affinity propagation) which does not allow to
specify the number of clusters, it was not implemented here.

Find a representative Cluster Name An important advantage of the clustering process
is that it makes the extracted directions more descriptive due to them being described
by several phrases instead of only one. However, it may be helpful for an attractive user
interface to find the single best description of the cluster direction by its element.

An analysis of [54] showed that a statistical method to extract features from clustered text
corpora identified the labels of human annotators as one of the top five most important
terms in only 15% of cases, implying “that human labels are not necessarily significant
from a statistical perspective” [54, p. 139]. In their paper, they suggest several methods
to find one representative name for the cluster.

Derrac & Schockaert [1] and its follow-ups [2, 3] did not care about such methods and
instead use either the name of the cluster center as its description or the cluster center
plus two other sample elements. This work experimented with several techniques to
get a more representative direction name. One of these techniques used the KeyBERT-
algorithm (see Section B.1) to find the term that is most similar to the set of terms making

46except that it requires to generate and quantify a new frequency matrix from the sums of the
individual counts.

47 3.3. Architecture

up the cluster. We also experimented with a method that embeds the cluster terms using
Word2Vec and returns the word behind the vector that is closest to their average, which
is not neccessarily part of the original set of words. Similarly to LSA (Section 2.5.1), it
is also possible to consider the entity whose pseudo-document embeddings is closest in
direction to the cluster direction.

The best technique to find a cluster-name was not evaluated yet. All considered methods
that formally evaluate the corresponding feature-directions work independently of the
actual cluster name. This is unfortunate, because subjectively, the name of the respective
directions is very important for the usability of any recommendation engine based on this
work. Especially this subjectivity indicates that the only way to evaluate the cluster-
names is with a study of human subjects.

Postprocessing the Feature-Directions

The main contribution of Ager et al. [2] is a postprocessing step that changes the final
space such that the ranking of entities w. r. t. each feature direction more closely mimics
the ranking of frequencies of that direction’s cluster words. The reasoning behind this is
that the original embeddings from which the feature directions are created are based on
global similarity. This makes it very vulnerable to outliers which often take up extreme
positions. If one now creates the feature directions from the space, these outliers are
assumed to have certain properties. The space is optimized for that, which limits the
quality of feature directions in the space. The problem here is again the global similarity:
If one entity ranks high for a feature, it is very likely that another entity that is close
to that will also rank high for this feature, even though it may be something completely
different. So to get better feature directions one has to distort the space. The authors
accordingly again use the BoW representation of the entites to fine-tune the positions
of the embeddings in the final space: After the clusters are collected and the entities re-
embedded, for each feature a new ranking is computed by the summed frequency of any of
a cluster’s words per feature and entity. Each entity is thus represented as Bag-of-Clusters
and again scored with PPMI to generate a ranking for each cluser/direction. This ranking
is then used as a target for a simple ANN that distorts the space representation. As has
been shown that it increases the algorithm performance only slightly while adding a
substantial amount of work, it was not implemented in the scope of this thesis.

Re-Embedding the entities into the new space

To finally get the feature-based representation of the entities, they are re-embedded
into a space where each of the vector components is a semantic directions and the value
are the respective rankings. According to the authors, the degrees of similarity are not
supposed to be encoded, which is why only the respetive ranking is considered.

3.3. Architecture

As elaborated in Section 2.1.2, one of the main motivations for this thesis was to create
a publicly available open-source version of the algorithm that is easily understood and
reproduced, adaptable for other datasets and methods, as well as fast and scalable, mean-

3. Methods 48

ing it can be run maximally efficient on single machines but also on compute clusters,
such as the IKW Grid.

This section will outline the architecture that was developed in order to achieve the
aforementioned results. The resulting pipeline is the result of a lot of trial-end-error, but
fulfills all of the aformentioned criteria, dealing with vastly differing sizes and kinds of
datasets, minimizing runtime wherever feasible and allowing for a multitude of paramet-
ers at every step of the process.

The rest of this section will go into further detail regarding the architecture of the res-
ulting code-base.

3.3.1. Implementation

The associated program is written by the author of this work and licensed under the
GNU General Public License (GNU GPLv3). The source code is written in the Python
Programming Language and available digitally on GitHub.47

The code is a proper python-package that can be installed into any Python 3.10 envir-
onment using for example python’s default package manager pip:
pip install git+https://github.com/cstenkamp/derive_conceptualspaces.git@main .
It can then be run using python -m derive_conceptualspace <COMMAND>.48 For more
information on how to invoke the code base with these commands it is referred to Sec-
tion A.2

To guarantee reusability of this code-base, there is also a Dockerfile49 that allows to
easily create a Docker-Container50 from it.51

3.3.2. Modularity

The developed algorithm consists of clearly divisible components (as demonstrated in
Figure 3.5), where the runtime for each of the steps is roughly in the same order of
magnitude. All of the aforementioned (Section 3.2.1) steps are itself algorithms with
many hyperparameter each. Furthermore, the framework described here does not even
require particular algorithms for the individual components, but rather a classes of al-
gorithms like dimensionality reduction techniques. This means that in practice, there is
a combinatorical explosion of settings and hyperparameters that must be experimented
with in order to find the best-performing one. Because of the clear modularity of the
algorithm however, many of these become only relevant in a later step of the pipeline.

47Source code: https://github.com/cstenkamp/derive_conceptualspaces/
Source of this Document: https://github.com/cstenkamp/MastersThesisText/
Compiled Document: https://nightly.link/cstenkamp/MastersThesisText/workflows/create_
pdf_artifact/master/Thesis.zip

48The command python -m derive_conceptualspace –help gives a peak into what sub-commands can
be used

49https://github.com/cstenkamp/derive_conceptualspaces/blob/main/Dockerfile
50https://www.docker.com/resources/what
51A Container can be thought of as a lightweight virtual operating system, in which the codebase is

bundled together with all required dependencies, libraries and configurations, enabling users install this
software on any system without having to download or install anything besides this container, irrespective
of operating system or software versions on the host OS. For more info about the container, it is referred
to https://github.com/cstenkamp/derive_conceptualspaces/blob/main/doc/docker_intro.md.

https://github.com/cstenkamp/derive_conceptualspaces/
https://github.com/cstenkamp/MastersThesisText/
https://nightly.link/cstenkamp/MastersThesisText/workflows/create_pdf_artifact/master/Thesis.zip
https://nightly.link/cstenkamp/MastersThesisText/workflows/create_pdf_artifact/master/Thesis.zip
https://github.com/cstenkamp/derive_conceptualspaces/blob/main/Dockerfile
https://www.docker.com/resources/what
https://github.com/cstenkamp/derive_conceptualspaces/blob/main/doc/docker_intro.md

49 3.3. Architecture

Due to this, it is reasonable to make the architecture as modular as possible, storing
interim results before every step, such that two parameter-combinations that differ only
in e. g. the fourth step of the pipeline can share the intermediate results up to that point,
keeping the required computation to a minimum.

The design principle of maximal modularity is the cornerstone of the developed pipeline.
All of the interim results store the configurations that were required for the respective
algorithm (and forward the ones of the input-files they transformed), as well as the
created output and plots. When there are different possible algorithms for a step, it is
ensured that its result are of the same format, as required by the next step. Many of the
individual steps generate additional plots that can be used as sanity-checks to quickly
inspect if the results so far are reasonable.

Workflow Management

A pipeline where multiple intermediate files for different parameter-combinations are
created introduces the problem of dependency resolution: Ultimately, there is supposed
to be one final file for every combination. This file however relies on intermediate files,
which in turn rely on intermediate files. To resolve these dependencies, there are many
existing Workflow Management Systems. For this thesis, Snakemake52 [20] seemed
the right choice.

Snakemake defines a small comprehensible domain-specific language ontop of python.
With this, a workflow is described in terms of individual rules, each of which defining
how an output is generated from several inputs using code or shell-commands. Through
wildcards, these rules can be generalized and hyperparameters introduced [20]. The job
of Snakemake is to infer a DAG from these, finding for every rule in the dependency tree
for the demanded file an output that generates the required inputs, and to create jobs for
all required instanciations of the wildcards if the required files are not already present.
Importantly, Snakemake then also handles the inevitable scheduling problem: Due to
(explicitly specified) restrictions of CPU and RAM and the nature of the unresolved
dependencies, not all jobs of the workflow can be executed simultaneously. Its scheduler
favors maximal utilization of CPU and parallelisation for minimal execution time [20].
Especially relevant was also that it allows to schedule these jobs on high performance
clusters and computation grids, and supports among others the scheduling system SGE
which is used to orchestrate jobs at the IKW grid. Configurations for the grid, like the
maximal runtime or the amount of RAM and CPUs to request, can be specified per-rule
as well as in special configuration files.

Snakemake was chosen because it is a lightweight system ontop of python, adding only
a few lines of code to specify what inputs and outputs are created ontop of the CLI
that is necessary to run and debug individual steps anyway. It is a useful tool if the
workflow can be divided into rougly equally long steps which can run independently and
heavily parallelized (possibly on multiple machines) with an optimal usage of resources.
Its file-centric dependency resolution system allows to fill in missing steps seemlessly
when working on specific configurations for later step, but on the other hand requires

52https://snakemake.readthedocs.io/en/stable/

https://snakemake.readthedocs.io/en/stable/

3. Methods 50

unintuitive customization if instead configuration-files with explicit parameter-choices
declare the demanded output for dynamically generated filenames. Also it unfortunately
doesn’t allow debugging and has a comparably small community.53 Section A.3 shows
the different ways the full pipeline can be invoked using Snakemake.

3.3.3. Modes of Execution / Use-Cases

It is possible to run the full pipeline for individual files as well as for a set of hyperpara-
meter-configurations specified via configuration files, but also possible to run individual
steps to inspect or debug the respective steps. To inspect and compare results it is pos-
sible to load all available parameter-configurations, as well as the complete history for a
certain combination, listing the generated outputs and metrics. Further, individual con-
figurations can be loaded in Jupyter Notebooks to generate and export plots and tables
from them (like the ones used in this text). The three main ways of exectution are:

Running individual Steps per CLI is the mode of choice when working on custom steps,
as it allows to attach debuggers and executes in the main thread. If a later step is ex-
ecuted, it is also possible to automatically generated its required dependencies using
the workflow-definition. Passing configurations is possible using configuration-files,
command-line-arguments or enviroment-files/-variables. For usage-examples, see
Section A.2.

Loading existing Configurations for inspection especially in Notebooks, allowing to
easily load a complete configuration including all its dependencies to inspect and
plot (intermediate) previously created results and outputs, also allowing to iterate
over several configurations to compare their results.54 For usage-examples, see
Section A.4.

Running/Scheduling a Workflow This mode is used to execute several hyperparameter-
combinations at once, specified via configuration-files. Thanks to heavy integration
for cluster scheduling systems, this allows for heavily parallelisation of jobs. Execut-
ing such a workflow on computation clusters is special case of this and elaborated
further in the following section. For usage-examples, see Section A.3.

Running on the SGE

Due to a combinatorical explosion in the hyperparameter-space as well as the computa-
tional complexity of the algorithm, running the pipeline a sufficient amount of parameter-
combinations would take several weeks on a single machine. As the IKW at the UOS
owns a dedicated computation grid55 with considerable modern hardware56 which uses
the SGE as workload manager, which is supported by snakemake, it was the obvious
candidate. Snakemake encodes special configurations for clusters using profiles,57 and

53As of 16th March 2022, there are only 1256 question tagged “snakemake” on StackOverflow (https:
//stackoverflow.com/questions/tagged/snakemake)

54The tables used in thesis are also automatically exported as LATEX- code from the functions available
there, as specified in their respetive references.

55https://doc.ikw.uni-osnabrueck.de/content/grid-computing
56Currently comprising, among many others, of 26 machines with an i7-11700 CPU and 64 GB RAM
57https://snakemake.readthedocs.io/en/stable/executing/cluster.html

https://stackoverflow.com/questions/tagged/snakemake
https://stackoverflow.com/questions/tagged/snakemake
https://doc.ikw.uni-osnabrueck.de/content/grid-computing
https://snakemake.readthedocs.io/en/stable/executing/cluster.html

51 3.3. Architecture

there exists a profile for the Sun Grid engine.58 Unfortunately, this default configuration
does not take into account many of the pecularities of the IKW grid and it needed to
be heavily customized in order to work. Foremost, all available machines to the author
of this thesis have a runtime-limit of 90 minutes, which means all of the algorithm-steps
that take longer than that must be able to be interrupted and gracefully shut down be-
fore getting killed and pick up the work on a new machine afterwards (including the job
responsible for the workflow scheduling itself). Additionally, the arguments to request
resources (such as memory or parallel environments) often differ from the documenta-
tion, and the accounting file which keeps track if jobs succeeded is not available to users,
so a custom one must be written. Resolving these and other issues required changing the
available profile heavily, so the result was open-sourced.59.

Scheduling on such engines interestingly unveils a whole new set of “hyperparameters”
that have to be optimized to use the available hardware as efficiently as possible: there are
limits of how many slots are available per user, there is a fixed walltime (and interrupting
and restarting leads to overhead), and the effiency of multiprocessing is not linear in the
number of threads per process. Thus, depending on the size of the dataset, resources
must be divided among the steps with care. The required resources of the rules are
accordingly dynamically allocated in the rule-descriptions of the workflow manager.

While the code required to scalably run on the IKW-grid required much more work than
expected, the result fulfills all demands perfectly, and the 64 allocated parallel envir-
onments (slots) are maximally utilized, while most of the complexity of the scheduling
system is abstracted away.60 The workflow is installed and run with a single (well doc-
umented) command and can be customized using explicit configuration-files. A sample
output of the custom-made watcher is listed in Listing 3.1.

3.3.4. Conclusion
It was originally unexpected, but implementing an appropriate architecture for the
present codebase has been a major focus of work for this thesis, and the result fulfills all
of the desired design criteria:

Modularity has been the main focus in the design, so exchanging components or running
individual steps is easy and intuitive.

Scalability is reached thanks to massive parallelisation wherever possible as well as a
professional workflow management system that is perfectly adjusted to the available
cluster engine but also highly customizable for other engines.

58https://github.com/Snakemake-Profiles/sge
59The resuling Snakemake-Profile is available and documented at https://github.com/cstenkamp/

Snakemake-IKW-SGE-Profile Note that it is heavily customized to the specific engine and thus includes
explicit machine names or runtimes. This repository also contains convenience-terminal-commands to
inspect failed pipeline-steps or to show the current progress of the current run. A sample output of the
latter is presented in Listing 3.1. Furthermore it contains .sge -files and shell-scripts to schedule or run
a requested workflow (see Section A.3)

60To the best of the author’s knowledge, no attempts going beyond simple .sge -files as job-descriptions
were attempted on the IKW-grid before, and much of the available documentation turned out to be false
information (as consultations with the grid’s administrator have shown).

https://github.com/Snakemake-Profiles/sge
https://github.com/cstenkamp/Snakemake-IKW-SGE-Profile
https://github.com/cstenkamp/Snakemake-IKW-SGE-Profile

3. Methods 52

Reproducibility and Adaptability are guaranteed by stringent encapsulation of com-
ponents, completely automating the full data-analysis-pipeline, open-sourcing the
code as proper package and containerization of the entire codebase for guaranteed
and worry-free setup on any machine or compute cluster. The exact hyperpara-
meter-combinations of [1–3] are included (see Section B.3), allowing to re-create
the original papers using this code-base. Running the code on new datasets is doc-
umented and can be done in a matter of minutes. Extending or exchanging steps
of the pipeline is seamless due to a consistent and understandable data schema,
and pre-existing analysis-notebooks can easily create informative plots and figures.

Transparency and Understandability are ensured due to rigorous documentation61 (among
others in this thesis) at any level of detail, from rough descriptions to concrete code-
examples. Code, documentation and used data are publicly and easily available.
Many analyses are included with the source-codes, for example allowing to visu-
alise all steps of the process that can work with arbitrary numbers of dimension
interactively in 3D. Code, data and configurations are clearly divided. All steps
of the pipeline are very explicit about the used configurations and dependencies
(making them traceable) and generate output at configurable levels of verbosity.
All intermediate output can be re-accessed using helper commands.

Scheduler : Task−Id 736317 , a c t i v e f o r 0 : 0 3 : 4 7 on ramsauer
Act ive Jobs :

Job 736319: does p r ep roc e s s_des c r ip t i on s_not rans l a t e f o r 0 : 0 3 : 1 7 on phobos with 1 procs .
Creates s iddata2022 /de_debug_False/mfauhtcsldp_onlyorig_minwords80/ pp_descr ipt ions . j son
Progres s : Lemmatizing De s c r i p t i on s : 50%| | 10843/21643 [01 :26 <01:03 , 169 .88 i t / s]

Job 736322: does create_dissim_mat f o r 0 : 0 5 : 3 2 on r i g e l with 3 procs .
Creates s iddata2022 /de_debug_False/mfauhcsd2_onlyorig_minwords80/ embedding_tf idf /dissim_mat . j son
Progres s : Creat ing d i s s i m i l a r i t y matrix : 3%| | 6/200 [00 :47 <20:55 , 6 .47 s / i t]

Job 736323: does create_candidate_svm f o r 0 : 0 2 : 4 5 on beam with 6 procs .
Creates s iddata2022 /de_debug_False/mfauhtcsldp_onlyorig_minwords80/ embedding_tf idf /mds_200d/ tf idf_ppmi_quadrat ic / f e a tu r e ax e s . j son
Progres s : Creat ing Candidate SVMs [5 procs] : 0%| | 0/6912 [00:00 <? , ? i t / s]

Job 736324: does create_dissim_mat f o r 0 : 0 1 : 1 7 on cippy02 with 3 procs .
Creates s iddata2022 /de_debug_False/mfauhcsd2_onlyorig_minwords80/embedding_ppmi/dissim_mat . j son
Progres s : Creat ing d i s s i m i l a r i t y matrix : 3%| | 6/200 [00 :43 <20:16 , 6 .27 s / i t]

Job 736327: does create_dissim_mat f o r 0 : 0 1 : 0 2 on cippy18 with 3 procs .
Creates s iddata2022 /de_debug_False/mfhcsd2_onlyorig_minwords80/ embedding_tf idf /dissim_mat . j son
Progres s : Creat ing d i s s i m i l a r i t y matrix : 2%| | 3/200 [00 :20 <22:40 , 6 .91 s / i t]

Job 736329: does create_dissim_mat . 8 3 . sh f o r 0 : 0 0 : 1 7 on vr6 with 3 procs .
Job 736330: does create_dissim_mat . 1 0 0 . sh f o r 0 : 0 0 : 1 7 on bunda with 3 procs .
Job 736332: does extract_candidate_terms f o r 0 : 0 0 : 0 2 on ocu la r with 1 procs .

Creates s iddata2022 /de_debug_False/mfhcsd2_onlyorig_minwords80/ candidate_terms_tf id f . j s on
Scheduled Jobs :

Job 736333: w i l l do create_candidate_svm . 1 5 1 . sh . scheduled f o r 0 : 2 6 : 1 4
Job 736334: w i l l do create_candidate_svm . 1 3 6 . sh . scheduled f o r 0 : 2 5 : 1 5

Fin i shed Jobs :
Job 736318: did pr ep roce s s_des c r ip t i on s_not rans l a t e at 00 : 35 : 57 on dodo , c r e a t i n g s iddata2022 /de_debug_False/mfhcsd2_onlyorig_minwords80/ pp_descr ipt ions . j son
Job 736321: did pr ep roce s s_des c r ip t i on s_not rans l a t e at 00 : 36 : 12 on a l t a i r , c r e a t i n g s iddata2022 /de_debug_False/mfauhcsd2_onlyorig_minwords80/ pp_descr ipt ions . j son

Fa i l ed Jobs :
Job 736320: f a i l e d at p r ep roc e s s_des c r ip t i on s_not rans l a t e
Job 736328: f a i l e d at extract_candidate_terms . 4 3 . sh

Listing 3.1: Sample terminal output of the custom watcher running a full configuration
on the IKW-grid. The script lists the currently running jobs continously,
including their progress and runtime and informs of finished or failed jobs.
Another script summarises the progress in snakemake’s dependency-graph.

61https://github.com/cstenkamp/derive_conceptualspaces/tree/main/doc

https://github.com/cstenkamp/derive_conceptualspaces/tree/main/doc

53 3.4. Evaluation Metrics

3.4. Evaluation Metrics

Two goals were stated in this thesis’ introduction: To implement a reliable software-
architecture that successfully replicates the works of Derrac & Schockaert [1], and figure
out if their methodology also works for the domain of educational resources. Given
that there is not one single correct target that the algorithm needs to optimize for,
there are also no obvious measurable metrics that can be applied straight-forward to
test the performance of the algorithm and no obvious optimal results. As the quality
of the desired results is defined purely over its subjective appeal to humans62, the only
evaluation method that could quantify that would be a large-scale study with human
evaluators, which unfortunately lies outside the scope of this thesis.

Instead, one has to rely on qualitative analysis of certain produced features as well as
proxy metrics. This section explains what kind of results have been chosen to represent
the algorithm’s performance as well as why these results are suitable proxies. Further-
more it is important to test if the architecture itself works reliably, which will be tested
by generating results for the placetypes-dataset and comparing them with those of the
literature.

Specifically, we are interested in the following questions:

1. Is the implementation correct? / Can it replicate the results of the original imple-
mentation?

2. Is the algorithm able to cope with the Siddata-dataset despite it’s different size and
features?

3. Does the general methodology work for the domain of educational resources?
4. What combination of components and hyperparameters leads to the best results?

The first question is easily answered by applying the same evaluation that [1–3] used
and comparing their results with ours. To answer question two, we will compare the
quantity and quality of some interim results of the algorithm being applied to placetypes
with their counterparts for the Siddata-dataset. Question three and four rely on some
quantifiable notion of what constitutes a good result, so this is the first question that
needs to be answered to know if the algorithm produces meaningful results.

3.4.1. Proxies hinting at meaningful results

The goal of the algorithm is to find semantic directions in the data and re-embed the
entities into a vector space spun up by these interpretable human concepts as its axes.
Thus, to evaluate if the emerged features are semantically meaningful, it can be measured
if any known natural categories are among the detected semantic directions or similar to
them. More specifically (as the algorithm works with BoWs which lose any information
about synonymity and similarity of tokens) it is enough to answer if terms accurately
predicting such are among the detected semantic directions. This method requires that

62[35, p. 133]: “It does not seem possible (nor desirable) to formally define what constitutes a good
facet, a typical problem in unsupervised learning”

3. Methods 54

the dataset is annotated with the respective concept, as that will be the respective clas-
sification target. The only easily obtainable target for the Siddata-dataset is a course’s
faculty, the targets for the datasets of [1–3] are listed in Table 3.3.

Semantic Classifiers This evaluation method is used extensively in [1], who evaluated
the practical usefulness of the created semantic directions by creating many different
classifiers which only receive the entity’s rank w. r. t. the detected semantic direction as
input. In line with the analogy of reasoning in conceptual spaces (see 2.3.2), all their cre-
ated classifiers correspond to commonsense reasoning patterns and are accordingly linked
to intuitive explanations, such as a 1-nearest-neighbor classifier linked to the explanation
“Y is in the same class as X because Y is closest to Y”. Using these, they evaluate if their
derived relations are sufficiently accurate to allow for classification that is comparable
to standard classification approaches while also allowing to give intuitive explanations
that are compatible with high-level human reasoning such as interpolation and a fortiori
inference.

Shallow Decision Trees Instead of a full suite of commonsense reasoning based classifi-
ers, [2] and [3] train depth-limited DTs [55] on the entities’ feature-based representations.
DTs are supervised learning models that predict the target value by inferring binary if-
then-else decision rules from the feature vector in a tree-like structure. The trees are
constructed using the CART algorithm, which at every level finds the combination of
attribute and threshold value that maximizes the prediction accuracy for the subset that
falls into the respective tree’s branch and partitions the attribute accordingly, to do the
same on resulting subtrees (thus maximizing information gain). Restricting the tree’s
depth ensures that only the features that are most important for the decision are se-
lected. The tree then classifies by finding the most important features for the decision,
thus finding the terms that most accurately predict the demanded concept in an intuitive
and interpretable way.63 Accordingly, we check if a depth-restricted tree that can ac-
curately predict the demanded property reasonably well can be found. If so, that would
provide evidence that the semantic directions correspond to actual human concepts. The
performance is measured by checking their classification on a held-out test dataset seper-
ately for each of the target’s classes in a one-vs-rest fashion. To get an estimate for the
maximally possible classification performance only on basis of the text corpus, it can be
compared to state-of-the-art text classification techniques such as the one described in
Section B.2.2.

Unfortunately, this does not test if the names of the discovered semantic features are
meaningful. It should further be noted that regardless of the classifier, only those features
that predict the existing classificiation targets can be tested with this method, which in
the case of the Siddata-dataset means that even if 10 features perfectly correspond to the
respective faculties, all other features are still unaccounted for. In order to get additional
targets, we will also compare the classification into the DDC-categories as deteced by
SidBERT (see Subsection 2.4).

63Sample depth-1 decision trees are visualised in Figure 5.1 The decision-rule of a depth-3 decision
tree corresponds to checking if a 3D-vector falls into one of 23/2 = 4 boxes, as visualised in Figure C.3.

55 3.4. Evaluation Metrics

Recovering entities from salient directions Re-embedding the entities into a concep-
tual space involves dimensionality reduction and thus necessarily goes along with a loss
of information. Apart from testing the meaningfulness of the directions, it can be tested
if any relevant information was lost. To account for that, we will test if it is possible to
recover the original entities using only a subset of the most salient generated features.
For that, we will also analyse under which conditions separate entities fall onto the same
position in the semantic space. This also provides evidence about how far the samples
are distributed in the vector-space. The linear classifiers used to create semantic direc-
tions profit from data that is split far apart instead of being on a compact hypersphere
which due to the curse of dimensionality fills only a negligible volume of the according
vector-space.64

3.4.2. Scientific Qualitative Analysis

Regardless of the performance of proxy metrics, the most important measure of the
algorithm’s quality is its subjective appeal, which can only be assessed by a qualitative
analysis. Unfortunately, subjectively evaluating at a subset of the resulting features and
samples is, even with the best intentions, also prone to cherry-picking, as the selected
samples may not be representative. Despite of that, a qualitative analysis provides
important insight into the algorithm. To alleviate these problems, it is reasonable to use
the scientific method and ask the question: “Before looking at the data, seeing what kind
of results would make us think the algorithm correctly does what we hope it does?”

Specifically, we will try to find evidence for the following questions:

Are intuitively appealing phrases among the semantic directions? Given the task of
manually embedding courses into a semantic space, there are some intuitive can-
didates one may think of that capture some important aspects of a course. For ex-
ample, a word like "computer" hinting at computer-science related courses. Other
obvious candidates that will be checked include "mathe", "recht", "musik", "man-
agement", "literatur", "sprache", "psychologie", "wirtschaft", "geographie", "schule",
"kultur", "wissenschaft", "sport".

Are top ranking courses for the directions convincing? We can not only classify courses,
but also rank them according to how much they have a given property. To test if
this is a good measure, will be to look at the courses that score highest for those
dimensions that score highest for the directions that best encode one of the fac-
ulties and see if they are convincing extreme examples of the respective faculty or
property.

Are embeddings of known similar entities close? An embedding that would put sim-
ilar courses far apart from each other would not capture human intuition. Accord-
ingly, the embeddings of exemplary courses such as Informatik A and Informatik B
can be verified. In particular it can be checked if Mikolov et al.’s [12] findings that
vector-arithmetic corresponds of embeddings matches semantic content (see Equa-
tion 1.1) by checking if vec(Codierungstheorie und Kryptographie) - vec(mathe) +
vec(informatik) ≈ vec(Kryptographische Methoden in der Informatik)

64cf. https://en.wikipedia.org/wiki/Curse_of_dimensionality#Distance_function

https://en.wikipedia.org/wiki/Curse_of_dimensionality#Distance_function

56

4. Results

Note that sometimes the extracted dimensions or precise values of some metrics differ
slightly. Mostly this is the case if a particular result comes from a task where it was
optimized for a different criterion. Where that is not the case, it was due to missing
random seeds that led to different train-test configurations in the final decision tree
classification. This is only an artifact of the evaluation and the underlying embedding is
unaffected by this, and generally demonstrates that slight variation leads to results that
are different, but still of high quality. All results reported here come directly from the
results as evaluated, which can also be verified in the respective repository1

This section summarises the results that the described algorithm achieved on the de-
scribed datasets according to the described metrics. Before going into detail about the
performance on the Siddata-dataset, a brief summary of the results on the placetypes-
dataset serves to demonstrate if the specific implementation can achieve comparable
results to [1–3], thus putting the other results into perspective in terms of what the
algorithm can realistically achieve on dedicated high-quality datasets.

Due to the implemented algorithm being unsupervised, there is no explicit target value
for each of the considered samples, making it impossible to straight-forwardly apply well-
known ML metrics such as Accuracy or F-1 score. What this algorithm tries to achieve
is a lot fuzzier than in the realm of classification: The end-goal of it is to embed the
given entities into a vector-space that consists of semantically meaniningful directions,
so the only actual metric would be a comparison checking if the respective categorization
here corresponds closely to human judgement. To do that, the best evaluation is likely a
study that asks for feedback of users that see the results of a developed system.2 Derrac
& Schockaert [1] performed crowdsourcing experiments on CrowdFlower,3 asking users
among other tasks which of several candidates could best describe the difference between
two movies. They also compared their results with those of running the supervised
algorithm of [16] on a subset of their data. Furthermore they tested if the explainable
classifiers generated from this algorithm (see Section 2.3.2) “help users spot incorrect
classifications” [1, p. 48], as well as if their algorithmic classification corresponds to
human judgement.4 While similar studies could be done in the Siddata-DSA [8] without
additional costs, carrying these out is outside the scope of this thesis.

4.1. Replicating results for the placetypes-dataset

To check if the implementation correctly produces the claimed results, it was applied to
Derrac & Schockaert’s [1] placetypes-dataset and its results compared to those of the
literature. Figure C.1 in Appendix C shows a two-dimensional t-SNE-embedding of the

1https://github.com/cstenkamp/MAAnalysisNotebooks
2An example for such a system is the Movie Tuner interface from [16], reprinted as Figure 1.1.
3http://www.crowdflower.com
4The task was set only for classification into OpenCYC and Foursquare Taxonomies of the placetypes-

dataset (see column ‘classification classes’ in Table 3.3).

https://github.com/cstenkamp/MAAnalysisNotebooks
h
t
t
p
s
:
/
/
g
i
t
h
u
b
.
c
o
m
/
c
s
t
e
n
k
a
m
p
/
M
A
A
n
a
l
y
s
i
s
N
o
t
e
b
o
o
k
s
http://www.crowdflower.com

57 4.1. Replicating results for the placetypes-dataset

original representations of [1], colored by their GeoNames-class. This figure indicates that
only few of the entities are linked with a class and that the embeddings barely cluster
when compared to their embeddings for the movies-dataset (displayed in Figure C.2).

Both [2] and [3] report the performance of depth-1, depth-3 and unbounded decision trees
classifying an entities’ category according to the Placetypes- and GeoNames-taxonomy.
Table 4.1 lists their results as well as some of their baselines in comparison with the res-
ults of this work. As shown in the table, this implementation outperforms the previous
results for all classification-task-configurations. Table 4.2 shows the results of different
configurations to generate the decision-tree classification. In contrast to the results re-
ported in Table 4.1 which are optimized for their respective classification target, these
results are from a single parameter-combination and robustly reproducible.

Literature baselines Literature results
Target Cls Ran LDA BL [1] [2] [3] this work

GeoNames D1 0.23 0.34 - 0.32* 0.32 0.28 0.51
D3 0.27 0.32 - 0.31* 0.31 0.34 0.54
DN - 0.27 0.2 0.37 0.24 - 0.46
Any - - 0.36 0.41 - - -

Foursquare D1 0.39 0.55 - 0.38* 0.41 0.45 0.50
D3 0.5 0.48 - 0.42* 0.44 0.57 0.58
DN - 0.47 0.53 0.53 0.42 - 0.57
Any - - 0.72 0.73 - - -

Table 4.1.: F1-scores of classifiers predicting GeoNames- and Foursquare-labels for three
baselines, [1–3] and this work. Cls column encodes the classifier: D1/3
are DTs of depth 1/3, DN unbounded DT. Condition Any refers to the
best of [1]’s semantic classifiers. Baseline-columns: Ran is the Random
baseline as reported by [3], LDA is LDA as reported by [2], BL is the best
baseline-condition from [1]. Columns [1], [2], [3] encode the best reported
scores per publication. Starred values in column [1] refer to results that
[2] reported for the configuration of [1] for conditions not covered by the
latter. Final column reports the results of this work (with balanced samples
and 1vsRest-condition; unlike Table 4.2, this reports the respectively optimal
parameter-configuration just like the best reported configuration from [1–3])
with a literature-consistent train-test-split of 70-30. A longer version of this
table listing more configurations per publication can be found in the Appendix
as Table C.2.

4. Results 58

Depth Any 1 2 3
1vsRest Balanced

False False 0.419 0.494 0.471 0.496
True 0.394 0.109 0.298 0.342

True False 0.413 0.314 0.331 0.378
True 0.382 0.487 0.505 0.506

T,U False 0.218 0.103 0.116 0.152
True 0.195 0.284 0.294 0.292

(a) GeoNames

Any 1 2 3

0.527 0.358 0.453 0.540
0.535 0.128 0.189 0.281
0.513 0.229 0.453 0.494
0.548 0.488 0.563 0.558
0.218 0.103 0.116 0.152
0.195 0.284 0.294 0.292

(b) Foursquare

Table 4.2.: F1-scores of various decision trees predicting GeoNames- and Foursquare-
labels. All scores result from 5-fold cross-validation averaged across 10 ran-
dom seeds, all from the parameter-configuration. Rows correspond to differ-
ent hyperparameters for the DT: If not 1vsRest, a single tree must predict
all classes at once (max. 2depth), otherwise performances of one classifier per
class are averaged. Middle rows report scores weighted by class frequency,
bottom rows (Condition T,U) unweighted averages of the same classifiers. If
Balanced, class weights are inversely proportional to class frequencies. Results
highlighted in green are respectively optimal scores, bold results are optimal
scores if class-score-weighting is forbidden.

4.2. Dataset differences

Having established that the implementation works correctly for the domain of placetypes,
we will now check if the quantity of some key characteristics produced as interim results
of the algorithm differ across domains. As discussed in Section 3.1, our dataset differs
in some properties from those of the literature. Because interim resuls may already
indicate the performance of the algorithm, looking at them provides useful information
that can be considered in the performance evaluaution. Table 4.3 contrasts the number
of feature vectors, candidate terms and cluster elements for the movies-, placetypes- and
Siddata-dataset.

Note that the first two rows display sample results of Derrac & Schockaert’s [1] original
implementation for the domains of movies and placetypes as it was uploaded by the
authors. Looking at the number of candidates and the number of those with a kappa-
score of at least 0.1, we see that in the case 200D × placetypes, 21 819 out of 21 833
candidate terms had a kappa-score of at least 0.1 and were thus considered semantic
directions.

The Siddata-dataset consists of more but shorter texts associated with an entity (visu-
alised in Table 3.1), which is why there are much less words in the respective texts that
exceed a given df for the Siddata when compared to the originally used ones (visualised
in Table 3.2). The algorithm uses a SVM to split entities that contain a phrase from
those that do not, which performs bad for heavily imbalanced class sizes. Figure 4.1
shows the distribution of texts per candidate as a histogram. It shows that 90% of the
10 060 candidates occur in 26 to 375 of the 11 601 documents. The median number of

59 4.3. Results for the Siddata-dataset

Kappa-Scores Cluster sizes
κ ≥ 0.1 κ ≥ 0.5 10th 90th

Terms Cands 50D 200D Sum 50D 200D Sum 50D 200D 50D 200D

movies [1] 589 727 22 903 9 429 13 916 13 918 - - 444 46 10 467 61
placetypes [1] 746 180 21 833 20 246 21 819 21 832 - - 697 30 9 1 616 115

Siddata 163 285 10 060 3 010 5 016 5 937 334 1 008 481 7 2 30 16

Table 4.3.: Distributions of some interim algorithm results for the considered datasets.
The first two rows are extracted from the results uploaded by Derrac &
Schockaert [1], the last from this implementation. First column are all
unique Terms, second column those considered Candidates by the algorithm.
Columns under Kappa-Scores indicate the number of candidates that ex-
ceeded the respective threshold (where reported). Sum column is the size of
the set union of the candidates exceeding the respective threshold over all di-
mensionalities, indicating robustness (optimally max(400, 200, 100, 40) = 400,
worst-case 400 + 200 + 100 + 40 = 740). Cluster sizes refers the 10and
90percentile of the cardinality of all respectively extracted clusters.

documents is 49, meaning that for half of the keyphrases only 0.42% of the samples are
in the positive class.

0
10

0
20

0
30

0
40

0
50

0
53

8-

54
82

#Texts containing a Candidate

101

102

103

Ca
nd

id
at

e-
co

un
t (

lo
g

sc
al

e)

Figure 4.1.: Distribution of texts per candidate (log scale), cut off at the 97th percentile.
Df-threshold for a candidate is set to 25, yielding 10 060 candidates for 11 601
documents. Median number of documents per candidate is 49 and for the
95th percentile 375. 2595 candidates occur in at least 100 descriptions.

These results show that the algorithm produces much less candidates for our dataset
compared with the originally considered ones. Because of that, the subsequent steps of
the algorithm have a less rich representation to choose from, decreasing the chance to
achieve good performances downstream.

4.3. Results for the Siddata-dataset
As previously described, the primary method used here to check if the described meth-
odology works for the domain of educational resources is to check if low-depth decision
trees trained on the extracted semantic directions of the Siddata-dataset can classify a
courses’ faculty. Before doing that however, it is important to first validate if it can reas-

4. Results 60

onably assumed that the faculty can generally be extracted from only the descriptions
associated with the entities.

Extracing faculties without the algorithm

t-SNE 2D-Embedding, colored by Faculty

Faculty
Sozialwissenschaften
Kultur-/Geowissenschaften
Erziehungs-/Kulturwissenschaften
Physik
Biologie/Chemie

Mathematik/Informatik
Sprach-/Literaturwissenschaften
Humanwissenschaften
Wirtschaftswissenschaften
Rechtswissenschaften

Figure 4.2.: 2D Visualization of the Course-dissimilarity matrix, generated with t-SNE.
See https://github.com/cstenkamp/derive_conceptualspaces/blob/
main/notebooks/text_referenced_plots/visualise_embeddings.ipynb
for the origin of this plot as well as a 3D-plot on unaltered 3D-MDS-data
that does not rely on t-SNE.

To see if it is possible to extract any kind of structured data from the unstructured
course descriptions, a BERT-based Neural Network classifier was trained on the dataset,
classifying the subset of courses that are for the UOS to the faculty they belong to. The
architecture of the classifier is described in Appendix B.2.2.

The classifier trained for 12 epochs before stopping early due to its performance on the
test-set decreasing. It achieved an accuracy of 85.19% for the test-set (94.13% on the
training set), providing strong indication that the faculty can be considered a latent
property of its description. Because BERT is one of the best general language classifiers
to date [15], this accuracy will be considered the upper boundary for the results of our
algorithm.

Figure 4.2 displays a t-SNE-representation of the dissimilarity matrix generated from the
normalized angular distances (Equation 3.1) of the BoW-representations generated from

https://github.com/cstenkamp/derive_conceptualspaces/blob/main/notebooks/text_referenced_plots/visualise_embeddings.ipynb
https://github.com/cstenkamp/derive_conceptualspaces/blob/main/notebooks/text_referenced_plots/visualise_embeddings.ipynb

61 4.3. Results for the Siddata-dataset

the courses (only those from the UOS) A first comparison of this scatter-plot and its
placetypes-counterpart (Figure C.1) reveals that Siddata appears to have more homo-
genous clusters.

From this distance matrix, the algorithm subsequently creates an embedding using the
MDS-algorithm to afterwards train multiple SVMs for each of the extracted candidate-
dimensions before re-embedding the entities into a new space where the dimensions en-
code the rank for each of the extracted features. To evaluate the algorithm, we will check
if it is to be able to classify the faculty with a decision tree that uses between one and
maximally 23 = 8 of these features. To provide a context for the resulting performance,
we will first look at a classification which does not use the feature-based representation,
but a raw low-dimensional embedding without class-specific dimensions. This can be
seen as the lower boundary of what a classification without selecting the most relevant
dimensions but instead use an optimal but general three-dimensional space can achieve.
A classification-performance of low-level decision trees that use only the most import-
ant features from all available ones that is higher than this thus provides evidence that
the detected features encode important distinctive properties. Figure 4.3 visually rep-
resents the result of the classification using a linear SVM on a three-dimensional space
generated as result of MDS on the dissimilarity matrix of the entities. Averaged over
all Faculties, this classifier reaches a weighted accuracy of 64.3% (unweighted accuracy
69.0%, weighted F1: 0.414, unweighted F1: 0.269). Note that these values are reached
by training on the full data without a separate testing-set.

Extracing faculties with DTs based on the algorithm

Having established upper and lower boundary for what can reasonably be expected from
the algorithm, let us finally look at the performance of its decision-trees, to gain evidence
if human concepts are encoded in its extracted features. Table 4.5 lists average accuracies
per faculty for decision trees created on the basis of a single hyperparameter-configuration
that was selected to achieve high performance on average. The respective values are the
average and standard-deviation of runs with 5-fold crossvalidation each for trees of various
depths. The results show high accuracies across all faculties even for low-depth trees, but
the faculty Humanwissenschaften displays a high standard deviation for that condition.

Depth 1 2 3 any

Accuracy 0.056 ± 0.008 0.078 ± 0.042 0.196 ± 0.017 0.584 ± 0.015
F1 0.072 ± 0.006 0.125 ± 0.014 0.199 ± 0.007 0.513 ± 0.020

Table 4.4.: Robust scores of a well-performing configuration for classifying all faculties at
once. The reported results are mean and standard deviation from the result
of ten runs with 5-fold crossvalidation each.

4. Results 62

Figure 4.3.: A possible Hyperplane on a 3-Dimensional Embedding. The SVM de-
picted here reaches an Accuracy of 67.9% (Precision: 39.8%, Recall:
70.5%). visualise interactively: https://github.com/cstenkamp/derive_
conceptualspaces/blob/main/notebooks/text_referenced_plots/
visualise_embeddings_mds.ipynb

Depth 1 2 3 unbound

Sozialwissenschaften 0.831 ± 0.021 0.811 ± 0.033 0.780 ± 0.028 0.918 ± 0.006
Kultur-/Geowissenschaften 0.806 ± 0.010 0.728 ± 0.066 0.813 ± 0.022 0.873 ± 0.008

Erziehungs-/Kulturwissenschaften 0.791 ± 0.010 0.824 ± 0.010 0.828 ± 0.020 0.868 ± 0.008
Physik 0.747 ± 0.054 0.770 ± 0.033 0.818 ± 0.038 0.983 ± 0.003

Biologie/Chemie 0.787 ± 0.044 0.838 ± 0.049 0.890 ± 0.036 0.982 ± 0.004
Mathematik/Informatik 0.866 ± 0.031 0.844 ± 0.051 0.882 ± 0.038 0.978 ± 0.004

Sprach-/Literaturwissenschaften 0.832 ± 0.009 0.832 ± 0.009 0.862 ± 0.009 0.902 ± 0.008
Humanwissenschaften 0.630 ± 0.130 0.768 ± 0.103 0.781 ± 0.093 0.949 ± 0.005

Wirtschaftswissenschaften 0.903 ± 0.015 0.910 ± 0.034 0.924 ± 0.018 0.989 ± 0.003
Rechtswissenschaften 0.948 ± 0.031 0.894 ± 0.015 0.952 ± 0.011 0.985 ± 0.003

Mean (weighted) 0.814 ± 0.035 0.822 ± 0.040 0.853 ± 0.031 0.943 ± 0.005
Mean (unweighted) 0.810 ± 0.020 0.806 ± 0.031 0.835 ± 0.023 0.901 ± 0.007

Table 4.5.: Robust accuracies per faculty of a well-performing configuration. The repor-
ted results are mean and standard deviation from the result of ten runs with
5-fold crossvalidation each.

https://github.com/cstenkamp/derive_conceptualspaces/blob/main/notebooks/text_referenced_plots/visualise_embeddings_mds.ipynb
https://github.com/cstenkamp/derive_conceptualspaces/blob/main/notebooks/text_referenced_plots/visualise_embeddings_mds.ipynb
https://github.com/cstenkamp/derive_conceptualspaces/blob/main/notebooks/text_referenced_plots/visualise_embeddings_mds.ipynb

63 4.3. Results for the Siddata-dataset

Keep in mind that accuracies often make the situation look better than it is. The weighted
average F1-scores are between 0.505 (depth 1) and 0.710 (unbounded). For the full table
of F1-scores it is referred to the appendix, specifically Table C.4.

Compared with the results of the BERT-based classifier (85.19%), the achieved results
are suprisingly competitive, with the weighted mean of trees of depth one and two only
slighly below that, and deeper trees achieving even higher accuracies. Importantly how-
ever, the results reported here are those of a sepearate classifier per faculty (1vsRest),
differentiating only between the respective faculty as positive class and all other faculties
as negative class. As will be further elaborated in the discussion, this is the only real-
istic way of doing it: A binary tree of depth one can differentiate between maximally
two classes and thus maximally achieve a classification by perfectly classifying the most
frequent class and labelling all samples as the second most frequent class, which in the
case of faculties is (2011 + 1665)/7081 = 51.9%. Results for such trees are reported in
Table 4.4.

Recovering entities from salient directions

After having tested if our semantic embedding captures at least one prominent latent
topic of the data, we will additionally check if the produced embedding adequately cap-
tures enough of the general variability of the data. For that, we check if it is possible
to recover entities from the salient directions, to ensure that no important relevant in-
formation was lost when mapping them to their semantic embedding. To get a general
understanding, let us consider under what circumstances multiple different entities will
fall towards the exact same coordinates.

To get an estimate of the importance of each dimension of the embedding, we started
with a full matrix where each entity is defined via each semantic direction. Starting with
a 200-dimensional space, we removed random directions. Further we applied different
levels of discretisation to the remaining dimensions. We wondered what amounts of
discretisation and removal of dimensions is necessary for multiple entities to fall onto the
same category. Each combination was done multiple times, each time removing other
random directions, and the percentage of duplicates in the data was counted. Table 4.6
displays the result of this.

2 11 23 116 232 1160
#dims (5800) (100) (50) (10) (5) (2)

3 100% 99.85% 68.98% 6.85% 5.25% 3.97%
5 100% 24.91% 9.79% 5.25% 4.72% 3.42%
10 100% 10.18% 6.90% 4.67% 4.23% 2.11%
20 100% 7.41% 5.58% 4.23% 3.52% 0.79%
50 99.97% 5.46% 4.72% 3.19% 1.89% 0.05%
100 99.88% 4.80% 4.18% 1.94% 0.65% 0%
200 99.55% 4.36% 3.44% 0.67% 0.09% 0%

Table 4.6.: Duplicates per combination of dimensionality and amount of categories per
left-over category. Row = number of left-over dimensions, cols = discretisa-
tion (number in parantheses is the divisor of the orginal value)

4. Results 64

4.3.1. Qualitative Analysis

The main goal of the algorithm is not to optimally classify the respective faculties, but
to find semantic directions. Thus, once it has been established that the performance is
reasonably well, looking at the names of these directions is just as important. Figure 4.4
visually represents decision-trees for each of the faculties of depth one, i. e. trees that
can only use a single semantic direction for their decision. With the exception of the
faculties Physik and Biologie/Chemie, the semantic directions that best predict each
faculty appear very relevant to the respective topic.

For trees deeper than one level, the selected features from the second level on are not
necessarily the most important ones.5 Instead it is possible to extract the most important
features for a classification by looking at the respective information gain achieved by
splitting it. Table 4.7 displays the resulting three most important directions for each
of the respective faculties. While the details of this result will be eloborated upon in
the discussion, most of the detected features appear convincing. Regarding an actual
classification using these features, Figure C.3 in the Appendix displays the result of a
sample classification of a decision tree with three features.

Accuracy
Faculty Top 3 Directions Top 3 Top 1

Erziehungs-/Kulturw. erziehungswissenschaft okumenisch english for 78.02% 75.50%
Rechtswissenschaften juristisch bgb bgb 95.86% 91.10%

Wirtschaftsw. center betriebswirtschaftlich kompetenz religionsunterrichts design 89.65% 79.10%
Kultur-/Geow. tourismus gi stadtgeographie 75.50% 77.44%

Mathem./Informatik programmiersprache menge hoffnung 93.00% 91.85%
Sprach-/Literaturw. deutsch literaturwissenschaft sprache okumenisch 86.71% 85.10%

Humanwissenschaften psychologie metaphysik internationalisierung 86.84% 85.51%
Physik neu entwicklung mitarbeiterinnen regelmassig aktiv teilnahme 78.27% 77.36%

Biologie/Chemie aktivierung studierend brd berucksichtigung finden 85.22% 62.13%
Sozialwissenschaften arbeitsmarkt regieren multiple 78.60% 67.63%

Table 4.7.: Top 3 directions to detect the respective faculty from the data. Note that it
may also be the case that low values for the respective feature encode class
membership.

4.4. Optimal Parameters

Having established the algorithm’s ability to be transferred to the domain of educational
resources, we will conclude this chapter with the results of our hyperparameter search.
The algorithm was run with hundreds of different hyperparameter-combinations for both
the placetypes- and Siddata-dataset throughout the process of its implementation and
testing. As the precise hyperparameter-combination was not very imporant for our re-
search questions, only some exemplary results for the Siddata-dataset will be reported
here for the sake of brevity.

5A DT has separate conditions for every subtree, which means on level two there are two different
features that depend on the result of the first split.

65 4.4. Optimal Parameters

Cluster Center Cluster Elements

opnv befragungen, bewohner, urbanen, 00 uhr
bertolt brecht brecht, exil, bertolt, weiss, weimarer republik, auschwitz, weimarer, ...

religionswis-
senschaft

religionsunterrichts, spirituelle, religions, teil veranstaltung, religion,
studienbeginn, auml ischen, ...

erkrankungen klinischen, gesundheitlichen, krankheit, rehabilitation, pravention,
aufrechterhaltung, exemplarische inhalte, ...

lineare integrierte, berechnung, variablen, skript, ubungsaufgaben, losung, vorliegen

parteien verfassung, demokratischen, zivilgesellschaft, semester sowie, einander,
folgendem link, sozialwiss uni osnabrueck, ...

kleidung textilien, mode, textile, parallelen
kreuz heilige, christentum, 1957, fuhrungen

offentliches offentlichkeitsarbeit, verwaltungsrecht, offentlichen recht, offentliches recht,
europarecht, staatsrecht, teilnahmevoraussetzungen veranstaltung, ...

masterstudium fortgeschrittene, schlusselkompetenzen, betriebswirtschaftslehre, untereinander

unterrichtspraxis fachlichen, unterrichtsplanung, schulalltag, lehrerinnen, schulische, daz,
bildung nachhaltige, ...

aristoteles asthetik, semantik, dialoge, menschheit, sucht, benutzt, philosophische, ...
mythologie athen, mythos, mann, griechen, ubersetzung, figur, griechischen, ...

flexibilitat weiterbildung, schlusselqualifikation, erfolgreiches, fordert, vorlagen,
strukturierte, berufsleben, ...

aktive
beteiligung

teilnahme ersten, wochentliche, zweit, festlegung, ubergreifende, auml ndige,
ndige, ...

unsicherheit covid 19 pandemie, korperlich, wendet studierende, webinar, risiko, einbringen,
fachlich, ...

wirtschaftlicher industrialisierung, wachstum, republik, wirtschaftspolitik, konkurrenz, positive,
russland, ...

Table 4.8.: Exemplary clusters found in the Siddata-dataset.

The reports produced in the previous section are the best ones from a final set of 165
different parameter-combinations, run over the course of three days on the IKW-grid.

Generally, we selected a parameter-configuration that reached a high accuracy on average
for the aforementioned classifiation based on shallow decision trees as representatively
good configuration. Here we compare all of the parameter-combinations that were con-
sidered - however the printed tables are shortened for a clearer overview.

As described in Section 3.2.1, a good first approximation for the quality of an embedding
is to check how many candidate-terms get a kappa-score which is above the threshold
of 0.5. Unfortunately, [1] and its follow-ups [2, 3] did not explictly and unambiguously
state how the kappa-score was calculated. Not only does its implementation have many
arguments, but also the application may vary. In general, it compares the prototypicality
according to the classificiation decision with the quantificiation of how often the according
word occurs in the entities’ associated texts. The precise mechanism of has however
many more parameters: for example, one can only consider those entities that have a
positive quantificiation-score, such that not almost all of the candidates have a score of

4. Results 66

zero6. Another open question is when considering the raw count as quantification7, if
the rankings induced by the orthogonal of the hyperplane are to be compared with the
raw count, or the ranking induced by the count. To clarify this ambiguity, we tried out
many different interpretations for this score.

Table C.5 (moved to the Appendix) shows the results of many runs with different
parameter-combinations with the purpose of figuring out which combination of para-
meters and kappa-metrics lead to enough candidate-terms. The meaning of the different
kappa-scores encoded in the columns is given in the implementation details in Table B.1.
. The table shows drastically differing values for the individual scoring methods. To
understand if the difference in scoring has an effect on which candidates are extracted,
let us look at the overlap of different measures in Table 4.9.

accuracy precision recall f1 r2r-d r2r-min b2b dig c2r+ r2r+d r2r+min r2r+max dig+2
(10060) (1668) (10060) (3155) (0) (2) (3052) (0) (4) (0) (239) (103) (1010)

accuracy - 0.166 1.000 0.314 0.000 0.000 0.303 0.000 0.000 0.000 0.024 0.010 0.100
precision 1.000 - 1.000 1.000 0.000 0.001 0.998 0.000 0.002 0.000 0.084 0.051 0.126

recall 1.000 0.166 - 0.314 0.000 0.000 0.303 0.000 0.000 0.000 0.024 0.010 0.100
f1 1.000 0.529 1.000 - 0.000 0.001 0.967 0.000 0.001 0.000 0.067 0.032 0.140

r2r-d 0.000 0.000 0.000 0.000 - 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
r2r-min 1.000 1.000 1.000 1.000 0.000 - 1.000 0.000 0.000 0.000 0.000 0.000 0.000

b2b 1.000 0.546 1.000 1.000 0.000 0.001 - 0.000 0.001 0.000 0.068 0.033 0.141
dig 0.000 0.000 0.000 0.000 0.000 0.000 0.000 - 0.000 0.000 0.000 0.000 0.000

c2r+ 1.000 1.000 1.000 1.000 0.000 0.000 1.000 0.000 - 0.000 1.000 1.000 0.250
r2r+d 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 - 0.000 0.000 0.000

r2r+min 1.000 0.586 1.000 0.887 0.000 0.000 0.874 0.000 0.017 0.000 - 0.406 0.452
r2r+max 1.000 0.825 1.000 0.981 0.000 0.000 0.981 0.000 0.039 0.000 0.942 - 0.437

dig+2 1.000 0.208 1.000 0.438 0.000 0.000 0.426 0.000 0.001 0.000 0.107 0.045 -

Table 4.9.: Overlap of different scoring methods in percent. Numbers in parantheses list
the total number of extracted samples for each scoring method. Upper right
triangle encodes the cardinality of the union divided by the cardinality of
column-method, lower left triangle divides by row.

This table additionally reports the raw accuracy, precision, recall and f1 -scores of the
classifier. The overlaps of these scores will serve to test our hypothesis that due to the
different nature of the Siddata-dataset, comparing the ranking of the candidates leads to
worse performances than comparing raw classification scores (also suggested by [2]).

After these preliminary analyses with the number of extracted candidates, let us also
quickly look at differences in perforamances of the decision-trees depending on parameter-
combinations. Table 4.10 lists the accuracies of DTs classifying a course’s faculty per
parameter-setup for some of the configurations of the final run. Specifically, this compares
accuracies for several 1vsRest decision trees of depth one with a test-set size of 33%.

6For the movies-dataset, a df threshold of 100 for a candidate means that up to 14 900 entities
(99.33%) do not contain the entities, meaning all scores and accordingly also their rank will be zero. In
constrast to that, the ranking induced by mapping of the high-dimensional and real-valued embeddings
onto the separatrix orthogonal will almost always lead to unique ranks.

7The exact wording of Derrac & Schockaert [1] is: “[...] measure the correlation between the ranking
induced by v_t and the number of times t appears in the documents associated with each entity [...]”.
This seems to imply that they are using the raw count, even though [2, 3] write in their algorithm
summary that they used the PPMI-score

67 4.4. Optimal Parameters

Dimensions 3 50 200
Lambda2 0.1 0.2 0.1 0.2 0.1 0.2

Preprocessing
Quanti-
fication

DCM
quant Metric

• Sentence-
wise merge

• add titles
• add subtitles
• rm HTML-tags
• lower-case
• rm stopwords
• rm diacritics
• use SK-Learn

ppmi count c2r+ 53.24% 47.22% 48.36% 41.91% 40.87% 36.57%
dig+2 49.66% 58.22% 74.73% 71.75% 80.32% 76.81%

r2r+min 67.79% 65.09% 74.99% 72.61% 74.51% 73.72%
ppmi dig+2 63.49% 64.76% 55.78% 61.40% 55.10% 65.32%

r2r+min 62.43% 67.83% 75.30% 75.99% 76.97% 73.84%
tfidf dig+2 55.81% 62.23% 75.22% 73.88% 76.34% 79.14%

r2r+min 63.23% 62.35% 70.58% 72.60% 77.69% 72.75%
tfidf count c2r+ 44.99% 59.00% 60.27% 37.56% 56.05% 43.24%

dig+2 45.45% 49.86% 75.75% 77.77% 76.25% 80.86%
r2r+min 61.91% 63.94% 72.69% 76.24% - 79.49%

ppmi dig+2 59.96% 61.40% 75.72% 79.54% 73.05% 74.02%
r2r+min 53.73% 55.10% 78.20% 79.53% 80.77% 79.47%

tfidf dig+2 56.14% 54.78% 75.32% 76.83% - 79.44%
r2r+min 60.44% 59.72% 78.26% 77.56% 78.81% 77.69%

• Sentence-
wise merge

• add titles
• add subtitles
• rm HTML-tags
• Sentence-

tokenisation
• lower-case
• rm stopwords
• Lemmatize
• rm diacritics
• rm punctuation

ppmi count c2r+ - 47.07% 40.11% 49.73% 44.68% 40.19%
dig+2 58.27% 58.48% 75.51% 73.56% 78.86% 78.04%

r2r+min 56.83% 69.00% 72.68% 72.59% 71.81% 72.63%
ppmi dig+2 58.72% 59.84% 69.96% 72.66% 71.10% 65.55%

r2r+min 59.29% 67.17% 76.10% 79.40% 77.18% 80.27%
tfidf dig+2 62.89% 63.42% 76.44% 73.92% 75.15% 78.93%

r2r+min 57.79% 59.07% 76.81% 76.61% 72.92% 74.68%
tfidf count c2r+ 61.90% 61.22% 46.97% 51.90% 48.99% 53.48%

dig+2 50.29% 50.43% 79.51% 78.89% 80.32% 78.37%
r2r+min 61.62% 57.49% 75.26% 79.52% 79.93% 78.67%

ppmi dig+2 60.45% 58.77% 79.95% 80.03% 79.68% 80.63%
r2r+min 63.10% 63.56% 78.56% 79.89% 80.49% 80.70%

tfidf dig+2 62.14% 63.87% 77.97% 80.25% 76.66% 78.65%
r2r+min 63.09% 62.09% 78.27% 76.41% 79.06% 80.92%

Table 4.10.: Decision tree accuracies for different parameter-combinations. (tree of depth
1, balanced, 1vsRest, 33% testset)

4. Results 68

deutsch literaturwissenschaft ≤ 80.8%
samples = 4903

class = other

samples = 3961
class = other

True

samples = 942
class = Sprach-/Literaturwissenschaften

False

neu entwicklung ≤ 23.4%
samples = 4903
class = Physik

samples = 1143
class = Physik

True

samples = 3760
class = other

False

tourismus ≤ 77.1%
samples = 4903

class = other

samples = 3784
class = other

True

samples = 1119
class = Kultur-/Geowissenschaften

False

psychologie ≤ 86.4%
samples = 4903

class = other

samples = 4252
class = other

True

samples = 651
class = Humanwissenschaften

False

arbeitsmarkt ≤ 69.4%
samples = 4903

class = Sozialwissenschaften

samples = 3421
class = other

True

samples = 1482
class = Sozialwissenschaften

False

center betriebswirtschaftlich kompetenz ≤ 82.%
samples = 4903

class = other

samples = 4048
class = other

True

samples = 855
class = Wirtschaftswissenschaften

False

erziehungswissenschaft ≤ 79.1%
samples = 4903

class = other

samples = 3861
class = other

True

samples = 1042
class = Erziehungs-/Kulturwissenschaften

False

programmiersprache ≤ 79.5%
samples = 4903

class = other

samples = 3915
class = other

True

samples = 988
class = Mathematik/Informatik

False

1977 ≤ 53.%
samples = 4903

class = Biologie/Chemie

samples = 2571
class = Biologie/Chemie

True

samples = 2332
class = other

False

juristisch ≤ 88.%
samples = 4903

class = other

samples = 4328
class = other

True

samples = 575
class = Rechtswissenschaften

False

Figure 4.4.: Resulting DTs with only a single decision for each of the faculties. The
white boxes show a semantic direction and the maximal rank w. r. t. to this
direction for an entity to fall under the class designated by the respective
left branch.

69

5. Discussion and Conclusion
The results generated thus far should finally answer our research questions and check if
the general thesis goals were achieved. In this section, we will first interpret the generated
results iteratively to be able to assess the performance of the algorithm on the dataset.
On the basis of that, an answer to the general question if the methodology is applicable
for the domain will be formulated. This is followed by a discussion of the algorithm
in itself from the perspective of somebody that worked with it extensively. Finally the
architechture is quickly discussed and the thesis concluded.

5.1. Interpretation and Discussion of results
First we evaluate our implementation by comparing its performance for the placetypes-
dataset and discussing possible reasons for any discrepancies. Following that, we will
discuss the results for the Siddata-dataset when compared to those of the literature to
see if the algorithm can cope with the domain transfer. On the basis of which we will
try to find an answer to the question if the general methodology is able to cope with the
domain in question. Afterwards we will discuss the results of the hyperparameter-search
and its implications on our dataset.

5.1.1. Results for Placetypes
When doing classification with decision-trees it is a design-decision to either train one
decision-tree per class that just classifies if a sample is that of that class or not (1vsRest),
or alternatively generate a single tree that must predict the exact class membership for
all classes at once (AllAtOnce). In Table 4.2, we reported the results for both of these
conditions.

The results indicate that performances for depth-limited trees are not consistently worse
than unbounded trees. This is not suprising, considering that decision trees are known
to be prone to overfitting, which can only really happen for unbounded trees. Similar
results were reported in the work of Ager et al. [2].

The best results were achieved for the condiditions balanced 1vsRest and unbalanced Al-
lAtOnce. In general the results indicate that especially for depth-limited trees it holds
that for single AllAtOnce classifiers, balancing is bad for performance an vice versa.
Considering that depth-limited ones can only predict very few classes explains why the
AllAtOnce condition performs badly overall. For the same reason, however, these clas-
sifier benefit from unbalanced datasets - without balanced sample-weighting, these trees
can just detect the most common class labels and assign them, which was shown to be the
case here as well. Generally however, especially for depth-limited trees, 1vsRest improves
performance.

5. Discussion and Conclusion 70

Explanations for good results

As shown in Table 4.1, the achieved results outperform those of the literature for the
placetypes-dataset in all cases, often with a significant margin. Considering that this
implementation replicates [1] without major algorithmic improvements and does not
contain some of the improvements of [2, 3], this is initially surprising, so here we will
discuss some possible explanations for that.

Errors Naturally, the first thing to to in this situation is to check for errors in the imple-
mentation. In following that route, however, it is important to keep in mind that errors
in the actual algorithm are an unlikely candidate for an erroneously high performance.
As elaborated before, the performance of the decision-tree is only a surrogate metric to
evaluate the resulting semantic directions. Among others this implies that the classific-
ation target for the task is disregarded in all algorithm steps except the final evaluation
with the decision trees. As long as that is given, the only realistic source of error that
leads to higher-than-expected accuracies reliably is thus in this step. This does not mean
that there are certainly no errors in the implementation of the rest, but as long as the
classification target is not used, all these errors would only coincidentally lead to better
classification results. In contrast to that, there are many sources of errors in the decision
tree classification that will likely lead to unrealistically high performances such as mixing
up the training- and testing set. In any case, both the algorithm itself and the decision-
tree classification was triple-checked for errors and many sanity-checks were performed
that all lead to the same conclusion, so from now on we will assume that the results are
correct and discuss possible reasons for that1

One-Vs-Rest-Classification [2, 3] are both unclear if they did the former or the latter.
Generally, All-At-Once would be the harder task and comparing accuracies of 1vsRest to
AllAtOnce an unfair comparison. However, there are a few things that can be assumed:

Both of them report to have used the sklearn-implementation of decision-trees, just like
this work. This specific implementation reportedly uses the CART algorithm [55], which
only allows binary trees, where every node has exactly two children2. Consequently, a
decision tree of depth one can only classify 21 = 2 classes, whereas a tree of depth two
can classify up to 22 = 4 classes. Due to that, the best achievable accuracy of a perfect
depth-1-tree is ||samples in two most common classes||

||samples in all classes|| , which is 176+74
403 = 0.62 in the case of

GeoNames and 88+82
391 = 0.43 for Foursquare.3 The latter value is lower than what [3]

report, indicating that is not how the authors generated results. This would be even a
lot more pronounced when classifying the movie genre, which has 100 classes.

Also semantically it is reasonable to assume to do 1vsRest: they state extensively
that they are looking for a direction for scarieness in movies, where the genre cor-
responding to that (Horror) is only one of the genres. This kind of mapping Genre-
FeatureDirectionPredictingGenre can only be found with separate trees per genre - and

1The code is open-source and available at github.com/cstenkamp/derive_conceptualspaces, and
the author of this thesis is thankful for any issues.

2https://scikit-learn.org/stable/modules/tree.html#tree-algorithms-id3-c4-5-c5-0-and-cart
3Note that these values only hold on average, as the samples are arbitrarily assigned to the train-

and test-set.

github.com/cstenkamp/derive_conceptualspaces
https://scikit-learn.org/stable/modules/tree.html#tree-algorithms-id3-c4-5-c5-0-and-cart

71 5.1. Interpretation and Discussion of results

thus generally per class. Both of these reasons lead us to the assumption that they likely
also did a separate tree for each of the features.

Dataset size Only a small subset of samples even have a class assignment (403 of 1383
in 7 classes in the case of GeoNames (see Figure C.1), 391 in 9 classes for Foursquare),
and the classes are heavily imbalanced (GeoNames between 176 and 14 samples per class,
Foursquare between 88 and 6). We used the classes as uploaded by [1]4, of course there
is the chance that they did not make all of their data publicly available, whereas [2, 3]
had access. Furthermore, that is generally a tiny dataset so the statistical power of any
result here is really low - maybe it is just coincidendence

Not having some improvements of [2] The contributions from [2] were primarily the
Fine-Tuning and the condition where averaged word-embeddings are used instead of MDS
(denoted AWV). As can be seen in Table C.2, these contributions do not seem to affect
the classification performance much, being in the same region as those for their MDS-
condition which is implemented here as well: There are no really significant improvements
that are not given here, giving no reasong to assume that their performance should be
superior.

Not having some improvements of [3] The Ortho condition of [3] actually does sig-
nificantly outperform the base algorithm for many configurations. For Foursquare, their
performance comes very close to mine, whereas their GeoNames-performances are a lot
worse than mine. Apart from that, if the code uploaded by [3] is really the basis for their
implementation, ther are strong reasons to doubt what they claim to do and what they
actually do really matches. A quick inspection of their uploaded source code5 revelaed
for example they take the kappa-score from on the raw predictions, not on the rank
like [1] described and like we do (see Table B.1) and also do not apper to weight the
kappa-scores. Apart from observations like this, it is hard to say more about their code,
because the two files uploaded by them are not the whole algorithm and also depend on
loading many files that are not in the repository, and also none of the evaluation on basis
of decision tree performance is in the repository.

Using the best configuration Another difference appears to be that we looked for the
best configuration for this particular task, which is a different one for each combination
of dataset × DT-depth × classification-target. It appears from their description that
[1–3] did hyperparameter-tuning before, using another possibly subjective metric, and
then decided on one (or rather four, see Table C.2) configuration that was not optimized
for the dataset × DT-depth × classification-target. It should be noted that in this
work, the algorithm is also not optimized for that task, but only the best of the 80
different parameter-combinations that were executed is used respectively. At the same
time however, some way to find a hyperparameter-configuration has to be used, and it
is unlikely that [1–3] chose the worst configuration. Table 4.2 displays robust results of
a parameter-configuration that proved good on average. As these results, however, also

4https://www.cs.cf.ac.uk/semanticspaces/
5https://github.com/rana-alshaikh/Hierarchical_Linear_Disentanglement/blob/master/

Hierarchical_Linear_D4.py#L485-L486

https://www.cs.cf.ac.uk/semanticspaces/
https://github.com/rana-alshaikh/Hierarchical_Linear_Disentanglement/blob/master/Hierarchical_Linear_D4.py#L485-L486
https://github.com/rana-alshaikh/Hierarchical_Linear_Disentanglement/blob/master/Hierarchical_Linear_D4.py#L485-L486

5. Discussion and Conclusion 72

outperform those of [1–3] significantly, choosing the best configuration seems to play only
a minor role for the performance.

Weighted Average of the individual classifiers The considered scores for the 1vsRest-
condition of this work are calculated from the scores of the individual per-class classifiers
both with uniform weighting per class (bottom two rows of Table 4.2) and also with
class weights inversely proportional to class size (middle two rows). Clearly, the condi-
tion that weights the indiviudal scores leads to better results. Weighting the score is a
reasonable assumption, given that the individual class frequencies are very imbalanced
(see Figure C.1). Unfortunately, [1–3] do not explicitly share if they calculated weighted
class scores as well. If we assume for now that [1–3] did report unweighted scores and
thus disregard the condition where class-scores are weighted (see bold scores in Table 4.2
or last column of Table C.2)), our results are still comparable with those of [1–3] and
especially in the case of GeoNames-labels a lot closer to those reported in the literature.
So while we hereby argue that weighting the scores makes sense, even if that is not the
case our results are still acceptable. Again it should be stressed that there are only really
few and imbalanced labels for this dataset in general, making the statistical power of
these results very small.

Improvements that we do have We do not have many differences in hyperparameters
or algorithm-components than [1–3] do, but there some. For example using tf-idf as
quantificiation instead of PPMI: Close inspection of Table 4.10 shows that often, the
tf-idf results are superior to the PPMI-results, and sometimes the combination of using
tf-idf as quantification and tf-idf as dtm-quantification is good. This may lead to two
conclusions: Either tf-idf is just better than PPMI under certain conditions, or just that
the fact that more different results generated here just increased the statistical chance
that good results were among the generated ones.

Conclusion

Even though this work did not do much beyond [1–3], maybe there were some small
things that were done here that gave an edge, such as trying out different or just more
hyperparameter-combinations. Maybe the scores here were calculated differently than
in [1–3], but even if that were the case the results generated here are still comparable.
Maybe our implementaion had errors, maybe those of [1–3] had, but in any case as
the dataset is so small exact results do not seem incredibly informative anyway. Most
importantly the comparison was performed to check if this implementation is working
correctly, and the evidence for that appears very strong.

5.1.2. Results for educational resources

One of our two research questions was to figure out if the methodology works for our
domain. So now that we have established that the implementation seems to work on
other datasets, we finally look how the algorithm copes with the Siddata-dataset.

Quantifiable dataset differences
When describing the datasets in Section 3.1, we noticed that they are quite different.
An important difference from our to the originally used datasets is, that in our dataset

73 5.1. Interpretation and Discussion of results

the relationship between how relevant a concept is for an entity and how often its words
occur in the respective BoW is not given. Furthermore, the Siddata-dataset contains far
less words per entity: the median number of unique words per description is three orders
of magnitude smaller compared to the placetypes-dataset (see Table 3.2). Even though
the number of entities in the dataset is higher, in sum it contains substantially less unique
words. The difference is very prominent in relation to the dataset size (indicated by the
last two columns). Because of this, for most of the n-grams that serve as candidate-terms
in the subsequent classification the positive class (entities that contain the phrase) is far
smaller than the negative class.

Derrac & Schockaert [1] extracted roughly 20 000 candidates for the movies- and placetypes-
datasets. If the same number of candidates were to be extracted in our case, more than
half of them would occur in less than 25 descriptions, such that the positive class for
the corresponding classification problem contains only 24

26346 ≈ 0.09% of the samples. It
seems unlikely that even class weighting can make up for that, yielding a bad classi-
fication. Because of this, it is justified to consider less entities. To improve the ratio
of classes, it was accordingly decided to only consider entities of at least 80 words (see
Table 3.1), which yielded the final number of 11 601 considered entities.

When discussing the dataset differences in Section 4.2, we assumed that the dataset
differences will likely lead to less candidates being extracted. This is confirmed by the
results: Figure 4.1 shows that the number of candidates that apply to each entity is
exponentially decreasing. The score represents a low faithfulness in the representational
capacity for many of the produced candidates. This indicates that there is a much vari-
ability in the dataset that is not explained by any of the extracted words. A consequence
of this is that mapping this space onto a limited number of extracted directions will lead
to a loss of information which does not model the full latent information.

Despite the small number of extracted candidates however, a sample run with 200 di-
mensions still yielded 5016 phrases with κ ≥ 0.1 (T 0.1) and 1008 with κ ≥ 0.5 (T 0.5),
which is enough for the algorithm, considering that for a 200-dimensional embedding
only 400 values with κ ≥ 0.5 would be necessary. However, there are far less ones in T 0.1

compared to Derrac & Schockaert [1], meaning the resulting clusters are considerably
smaller.

This, however, is not necessarily a sign of bad performance of the algorithm: The number
of cluster-elements that [1] for the 200-dimensional CS for the placetypes dataset (see
Table 4.3) is 21 819. Considering that they considered number of candidate is 21 833, the
threshold does not meaningfully reduce the number of considered words. Accordingly, in
this dataset all extracted words (which are all words with df ≥ 50) are considered in the
final embedding. This leads to high amounts of noise, i. e. a bad modelling of the actual
latent topics.

Increasing the threshold a candidate to be considered a faithful representation also does
not help: Consider the Sum column of Table 4.3. The first two rows of Table 4.3 dis-
play sample results of Derrac & Schockaert’s [1] original implementation for the domains
of movies and placetypes as it was uploaded by the authors. Let us consider the Sum
column, which indicates how many unique terms have been identified and used as most

5. Discussion and Conclusion 74

important feature direction among all different uploaded conditions. The authors up-
loaded their results for embeddings of the dimensionality 200, 100, 50 and 20, in each of
which the number of extracted cluster centers was 2*ndim. Considering this, the minimal
number of cluster centers that could be extracted among all their uploaded results is 400.
The worst case would be given, if the sets of salient terms for each of these runs would be
completely mutually exclusive. In that case, not a single term that was considered salient
by one of these results would considered salient by any other configuration, such that
the sum of unique terms extracted among all combinations is 400+200+100+40=740.
This can be seen as a measure of Robustness of the algorithm. If different parameter-
combinations or just different initial random number generator results have a high impact
on the generated results, the algorithm is not robust. In the case of our algorithm this
shows in different extracted candidate terms. For the placetypes-dataset, 697 different
semantic directions are found. Considering the condition κ ≥ 0.1, 21 832 of the 21 833
candidates were considered salient among the runs. This indicates much noise in the
dataset that obfuscates the latent information.

These observations lead us to the conclusion, that extracting less candidates may better
capture the semantic content of the dataset. The disadvantage is that the resulting
embedding captures less variance of the original dataset, however, those directions that
are extracted show increased robustness. This is also indicated by the lower number of
uniquely extracted candidates summed over all run-configurations in Table 4.3.

When discussing the dataset, we already theorized that only keeping those entites for
which a classifier can successfully predict its faculty may help to increase dataset quality.
That turned out to be not necessary but would still be a good future research opportunity.
Another possibility that could have been considered in the case of low performances is
to use only the 1500 with the longest descriptions, bringing its distribution closer to the
placetypes-dataset (but not changing the properties).

In sum, our previous hypothesis that the different dataset statistics leads to different con-
ditions for the algorithm seems confirmed by the intermediate results. On the other hand,
the final classification performances (Table 4.5) are proof some important information of
the dataset is captured regardless. In fact, not only are enough candiates extracted by
the algorithm, but the results even indicate less sensibility for different hyperparameters
for our dataset compared to the results of [1] for the placetypes-dataset. Regarding the
algorithm, our results indicate that the methodology is robust and does not only work
for datasets with the aforementioned properties.

Classification results
Comparing the t-SNE-embeddings of the classification problem associated with the Siddata-
dataset (Figure 4.2) with the one of the placetypes-dataset (Figure C.1) indicates that
the former seems to be more prominent in the data. This saliency of the faculty in
the representation of the samples is further confirmed by the fact that both our imple-
mentation of BERT and even representation relying on only three dimensions achieve
reasonable performances on the data.

75 5.1. Interpretation and Discussion of results

We should keep in mind that the problem appears to be comparably easy when evaluating
our performance. Despite this, our acccuracies are suprisingly good: Our algorithm
robustly achieved 81.4% accuracy with depth one trees, which is comparable to the
accuracy for BERT (85.19%), and by far outperforms the 3D-embedding (64.3% weighted
accuracy). This indicates that our method indeed finds terms that accurately predict
the faculty among its salient directions. A classifier that that uses only three dimensions
is already better than BERT, and the unbounded one has 94.3% classification accuracy.
This stands in contrast to the results of [2], who report that their depth-1 trees achieved
the best overall performance. In contrast to the placetypes-dataset, unbound trees for
this dataset appear not to be overfitting. This can be explained by less noise and general
variance in our dataset. Another interesting observation from these results is that the
variance is on average comparably low, indicating robustness.

Unbounded DTs are actually only an answer of the question if it can recover at least one
property from the dimensions, not how important one or any of the dimensions are. So
their good performance is only a measure of the question if the information about the
faculty is not lost through the embedding.

Interestingly, classifying all faculties at once performed a lot worse in case of the Siddata-
dataset (Table 4.4). This difference in performance is a lot more prominent than it was
for the placetypes-dataset. Considering this, a fairer comparison to BERT would have
be to also split the dataset into several 1vsRest problems.

When looking at the individual faculties, we see that for the faculty Humanwissenschaften,
depth-1-trees perform a lot worse than for the other faculties, but also shows a large
standard deviation . This indicates that the classification performance for this faculty
strongly depends on what ends up in the train set, leaving the interpretation that the
individual descriptions of courses belonging to this faculty have a higher degree of vari-
ance in their descriptions. This is an interesting result, as we would have expected other
faculties that contain many different courses of study to have a higher variance.

While these quantitative results look very good, it is important to stress that they only
refer to how good the faculty can be detected from the semantic directions, which is only
one (apparently very prominent) property of the data. Evaluating the algorithm this
way is in line with the literature [1–3], but does not test everything the algorithm does
or how it may perform with respect to other human concepts among the data. In our
evaluation, we also evaluated the algorithm on its performance when classifying the first
level of the DDC as detected by SidBERT with similar performances.6. As, however,
the categorization system of that shows high similarity to the categories made up by the
faculties, the results for these are not printed in this work. Other avenues may include to
try to detect the difficulty of a course on basis of average grades, the interdisciplinarieness
on basis of the number of students from other faculties attending it, or the effort required
for it with labels generated from the amount of ECTS a course provides. Unfortunately,
metrics are not present in the current dataset. Ultimately, the best way to objectively

6https://github.com/cstenkamp/derive_conceptualspaces/blob/main/notebooks/analyse_
results/siddata/decisiontrees_bestconfig.ipynb

https://github.com/cstenkamp/derive_conceptualspaces/blob/main/notebooks/analyse_results/siddata/decisiontrees_bestconfig.ipynb
https://github.com/cstenkamp/derive_conceptualspaces/blob/main/notebooks/analyse_results/siddata/decisiontrees_bestconfig.ipynb

5. Discussion and Conclusion 76

quantify the quality of the directions remains to perform studies with human subjects
evaluating their subjective appeal.

Dataset Quality

Now that we have established that we have reason to assume that our algorithm is good,
let us interpret some results with respect to the dataset. We have extensively discussed
our dataset with respect to the frequencies of words, let us now try to see if we can
speculate about some more of its properties.

Among others, we are interested if any important information gets lost when using only
the extracted semantic directions to embed the entities. The results for unbounded
decision trees (Table 4.5) which achieve 94.3% weighted accuracies indicate that at least
regarding information about the faculty seems to not get lost. This indicates again that
our directions are useful to express the variance in the data, considering that the results
for the faculty are not trained on but are only a side effect of the extracted semantic
directions.

Another method conducted to test how much variance in the dataset is explained by the
semantic directions was to check how many dimensions and what amount of discretisaton
was required such that multiple entities fall onto the same position in the left-over vector
space. Table 4.6 shows how many dimensions are required such that enough entities
are unambiguously defined. The results indicate that without much discretisation of the
space, a small number of directions is enough such that no duplicate positions will be
taken. This indicates that much of the variability in the original data can be explained
by a small number of dimensions. Considering however that these are random directions,
it also indicates a high correlation/linear dependency of the dimensions that are left over,
otherwise this would only hold if the leftover directions happen to be the good ones.

It is, however, much more interesting to analyse which of the entities did become duplic-
ates through this. Table 5.1 shows a sample where three out of four entities that landed
on the same position refer to the same course of different years. Results like this indicate
that all results concerning ambiguity of samples must be taken with a grain of salt, as
the dataset even in its cleaned form seems to still contain many duplicates.

Course Name Leftover Dimensions
strukturierten internationales 1950er

!! FÄLLT AUS !! Anna Seghers: Das siebte Kreuz (1942) 2 15 18
Anna Seghers: Das siebte Kreuz (1942) 2 15 18

Anna Seghers: Das siebte Kreuz (1942) (NDL 2) 2 15 18
Friedrich Hebbel: Agnes Bernauer (1852) 2 15 18

Table 5.1.: Sample courses falling onto the same embedding after discretisation.

Qualitative analysis of the extracted dimensions

Table 4.7 shows the extracted feature directions that, according to a DT classification,
best predict a faculty. Many of the extracted features are subjectively very appealing in
encoding the faculties - in some cases even extracting the exact faculty name. Figure 4.4
displays the results from another hyperparameter-combination, which are similarly con-

77 5.1. Interpretation and Discussion of results

vincing. In a recommendation system, many of these directions would make sense as
features semantically describing a course. Table 4.8 shows some exemplary terms that
make up a cluster. These look intuitively appealing as well.

When looking at the examples per faculty, we observe mixed results. On the one hand,
e. g. erziehungswissenschaft is perfeclty on point, on the other hand the extracted terms
for faculties for Physik and Biologie/Chemie did not look convincing in a single run. One
possible explanation may be low class frequency. Both mentioned faculties are among
the smaller classes, but so are Mathematik/Informatik and Wirtschaftswissenschaften,
both of which are generally classified really well.

Do bad performances correlate with bad feature names? In almost all results, the
extracted dimensions for the faculties Physik and Biologie/Chemie appeared the worst.
The results for these faculties show the highest variance and do not make much intuit-
ive sense. The top extracted directions (Table 4.7) show that the dimensions are good,
explaining why even the performance of depth-one-DTs is good. Quantitatively, we ob-
served the worst performances for the faculties Humanwissenschaften, followed by Physik
and Biologie/Chemie. Looking at Table 4.7 shows reasonable results for all faculties
except for Biologie/Chemie and Physik. That is interesting: Even though for Human-
wissenschaften the performance is generally not too good, the dimensions we extracted
from it are plausible.

NDim 50 200
0.1 0.5 0.1 0.5

computer 24 0 4 11
sport 10 12 4 11
recht 27 0 11 4

musik 17 12 7 8
management 25 0 9 6

literatur 0 0 0 0
sprache 22 0 9 6

psychologie 23 2 3 12
wirtschaft 25 0 13 2
geographie 28 0 10 3

schule 17 8 7 6
kultur 22 0 5 8

wissenschaft 17 0 14 0
sport 10 12 4 11

N 38 38 15 15

Table 5.2.: Number of appealing phrases found among the directions. Results show the
number of parameter-configurations in which the respective word was extrac-
ted as direction. Last row indicates how the how many configurations are
considered for each column.

Are intuitively appealing phrases among the semantic directions? In Section 3.4.2,
we decided on some terms that would make intuitive sense as semantic directions. The
results from Table 5.2 show that many of these were actually used as candidates robustly
among many different parameter-combinations. This is a very promising result, espe-
cially considering that the actual document frequencies for these terms are comparably

5. Discussion and Conclusion 78

low, making the result even more astonishing and indicating robustness by how many
different configurations found these teerms to be significant.
computer 1.0%
mathematik 0.8%
mathe 0.0%

wissenschaft 3.3%
recht 4.16%

musik 2.27%
sport 1.03%

Some of these phrases even regularly end up as a deciding factor to detect one of
the faculties in the decision trees, such as computer for Mathe/Informatik, psycholo-
gie for Humanwissenschaften, Schule for Erziehungs/Kulturwissenschaften or (interest-
ingly) wirtschaft for Sozialwissenschaften. This was even much more pronunced when
also counting if the phrase was part of the word, such as recht being in the detected
dimension wirtschaftsrecht. All extracted ones are: schuldrecht, strafrecht, deutsch recht,
offentliches recht, grundrechte, urheberrecht, steuerrecht, strafrecht, deutsch recht, recht,
grundrechte.

Are embeddings of known similar entities close?

Figure 5.1.: 3D-Plot with an SVM for the term mathematik, also highlighting the courses
Informatik A and Informatik B. Negative samples are hidden for better vis-
ibility, and entities that contain the word more often than the 75th percentile
have bigger markers.

Figure 5.1 displays a 3D-Embedding for courses, splitting courses which contain the
term "mathematik" from those that do not, also hightlighting the courses Informatik A
and Informatik B. Both courses are close to each other for both the normalized angular

79 5.1. Interpretation and Discussion of results

distance and also euclidean distance.7 Further, even though neither course description
contains the word mathematik, both courses would receive high values for this feature,
indicated by the distance to the decision plane.8

Are top ranking courses for the directions convincing?

To further analyse the quality of the results, we are interested in the top courses of
those directions that best represent the different faculties. Table 5.3 displays the most
prototypical examples for each of those, which is directly derived from the rankings
induced by the classifier.

Faculty Top Direction Top Course for Direction

Erziehungs-/Kulturw.
erziehungs-
wissenschaft

BA GM 3.2: Der Kinder Zukunft aus elementarpädagogischer Sicht

Rechtswissenschaften schuldrecht Strafprozessuales Ermittlungsverfahren, [...]
Wirtschaftsw. fallstudie WIWI-B-18001-WI: Management Support Systems B I (BI-Praktikum SAP/BW)

Kultur-/Geow. stadtgeographie Mittelseminar/Angewandtes Seminar: Geographische Handelsforschung [...]
Mathem./Informatik mechanik Technische Mechanik IV für Maschinenbau

Sprach-/Literaturw.
deutschen
literatur

Deutsch - diachron: Historische Linguistik und Sprachwandel in der Gegenwart [...]

Humanwissenschaften gehirn Willensfreiheit und Hirnforschung [...]
Physik klar B1-B2 Schwedisch Erweiterungskurs: Schweden - das Land und die Menschen (DIGITAL)

Biologie/Chemie stattgefunden Transformation wohlfahrtsstaatlicher Regime in Europa: Aktuelle Forschungskontroversen
Sozialwissenschaften parteien Modul Vergleichende Politikwissenschaft I: Westliche Regierungssysteme im Vergleich

Table 5.3.: Highest ranking courses per feature that best predicts the faculty.

Again we observe that many of these make intuitive sense, but Physik and Bio/Chemie
cannot be satisfactorily captured by our dimensions. Mechanik was an unfortunate choice
to encode Mathematik/Informatik, however the corresponding course for the direction
definitely seems resonable.

5.1.3. Hyperparameters results

After much preliminary elimination of other techniques, we decided on 165 different
hyperparameter-combinations for the final run, which are what was decided on in after
much preliminary elimination of other techniques.9 For example, prior experiments have
shown that the reclassify algorithm to find cluster directions outperforms the one used
in [1], which is why the latter was not considered in the final evaluation, to counteract a
combinatorical explosion of hyperparameters.10

Classifier-Scoring-Methods Let us first consider if the choice of the exact evaluation
method to quantify the classifier performance is relevant. For that, we look which score
leads to the best result, and if the results differ drastically. Table C.5 clearly indicates
that the algorithm is very susceptible for the exact scoring method used. It was to be
expected that comparing raw counts to rankings performs worst (column c2r+), and that

7Normalized Angular Distance: Average 1.00, Info A and Info B: 0.37 (Percentile 8.2), Euclidean
Distance: Average 0.88, Info A and Info B: 0.39 (Percentile: 8.9)

8Both statements are better visible in the interactive version of the plot
9An exception to this are of course the results for three dimensional spaces, which are not competitive

and only generated because they are more intuitive and presentable.
10With regards to this specific parameter, there is however qualitativ evidence given in Table C.3.

5. Discussion and Conclusion 80

was confirmed. Besides this, it is also interesting how big the difference between rtr2+min
and r2r+max is, considering that they only differ in how they deal with duplicates. It was
suprising that digitizing the values worked at all. We see that the only scoring-methods
that produced enough (2*#Dims) cluster-centers are those that only considered those
terms that occur at least once, which makes sense given that otherwise the scoring was
too much influenced by the number of elements in the positive class.

To get a better grip on the algorithm’s robustness with respect to the exact scorer choice,
let us now also consider their overlap as printed in Table 4.9.

Some things we see include:

• binary kappa and F1-score have a high overlap (kappa being a bit stricter)
• comparing rankings of only the positive values and their digitized versions leads to

the exact same results
• all of r2r+min/dig+2, kc2r+ are in b2b
• all of the onlypos-statistics are completely in the respective kappa bin2bin

Furthermore, looking at the individual scoring methods also provides insight with regards
to the question if the different nature of our dataset needs to be accounted for: As
established, a very important difference is that more relevant words do not occur more
often in the Siddata-dataset. This makes it a reasonable assumption that scorers that
evaluate the rankings should perform worse: If it is not the case that important words
that are very relevant to an entity necessarily occur more often in its associated text,
comparing its ranking should perform worse than considering the classification as a binary
problem.

We can test that by comparing the overlap of features that achieve high kappa-scores with
those that achive high scores of binary metric such as accuracy, precision, recall and F1.
Table 4.9 indicates first that the binary metrics are a lot less strict than the kappa-scores:
All those terms which exceeded the threshold of 0.5 for one of the kappa-scores also did
so for accuracy and recall. For precision and F1, however, this is not the case. More
evidence is that the kappascores are a lot worse on count than they are on quantificiations.
Furthermore, the kappascores are a tiny bit better on lemmatization than without it,
providing even more evidence, as it is to be expected that this configuration has a slighly
higher word count.

Other Hyperparameters Note that the results reported in Table C.5 were considered
w. r. t. deciding which ones to take for the final runs. This refers only to the decision
which scoring methods to use but also about the hyperparameters up to that point -
if not at least 2*ndim candidates for clustercenters are generated, the config is useless.
In fact, it can be assumed that more extracted values are generally better, because if
only the minimal number is generated all of them will become cluster center no matter
their degree of collinearity, which makes the resulting space useless. With that in mind,
Table C.5 suggests that a parameter-config with 200 dimensions that tf-idf will tend to
produce most dissimilar candidate directions.

In general, the results for different hyperparameters in terms of classifier performance
(Table 4.10) indicate some trends:

81 5.2. General Algorithm

For one, it definitey shows that comparing the raw count with these rankings performs
worst, indicating that while the wording in Derrac & Schockaert’s [1] was ambiguous,
they likely talked about comparing the respective ranks. The second predictor of below-
average scores is the usage of a three-dimensional embedding. This was to be expected,
and given the low expressive power exptected from a three-dimensional embedding, the
observed scores are even surprisingly high.

Comparing PPMI and tf-idf as scoring methods does not show any clear trends, however
we can also not find good reasons to prefer the former over the latter. Given that calcu-
lation of PPMI-scores relies on huge matrix multiplications which are computationally
inefficient, we would suggest to use the well-known well-optimized tf-idf score instead.
Another insteresting observation is that scoring the Candidate-Matrix differently than
frequency matrix of the texts is competitive with using equal scorings for both. Also,
even using the raw count for the candidate-matrix did not perform very badly, serving as
our final piece of evidence to see the robustness of the algorithm for datasets like ours.

Besides these observations, the other hyperparameters did not seem to affect classification
performances much. In the printed table, the highest score is yielded by a 200-dimensional
embedding with tf-idf encoding. However the results slightly varied for different random
seeds due to differing elements ending up in the train- and test-set, leading to slightly
different results with another hyperparameter-configuration ending up slighly better than
the one printed in this thesis.

5.1.4. Did we achieve the thesis goal?

Let us now take a step back and answer the question if the results indicate that we
achieved the aims of this work. For one, there is certainly more work to do to increase
robustness of the results in the sense that an unambiguous name for the resulting semantic
direction comes up without being affected much by precise hyperparameter choices or
random seeds. The fact that we have tested only by comparing how good the classification
can be predicted is also a drawback, but a human study would be clearly outside the
scope of this work.

Our results and analysis reach all expectations set in Section 1.3.1: We have extensively
analysed the difference between the Siddata-dataset and the originally used dataset.
Though many differences between the datasets have been found, it has been shown that
the algorithm can make sense of the dataset regardless. All results printed in this work
are open-source and the original notebooks are freely available to prove that we did not
cherry-pick any results for the analysis performed of the previous section. The semantic
directions we have found allow to predict a courses’ faculty, which encodes an important
feature for the recommendation of educational resources. Our performances to predict
the faculty even outperforms a classification relying on BERT.

5.2. General Algorithm

After having presented and meticulously implemented the algorithm of Derrac & Schock-
aert [1], we are familiar enough with the relevant theory and practice, allowing us to now
critically reflect on the algorithm in general.

5. Discussion and Conclusion 82

5.2.1. Algorithm idea

When first looking the algorithm of Derrac & Schockaert [1], it appears astonishingly
specific. However after having read Gärdenfors’ book Gärdenfors [18], the idea for their
algorithm is self-evident: In it, Gärdenfors suggests that conceptual spaces can be gen-
erated from high-dimensional sensory input by using MDS to project the original data
into a Euclidean space to do geometric reasoning in that space. The book has an entire
chapter on computational aspects, in which the author discusses vector space models,
dimensionality reduction techniques an ANN architectures for different levels of human
conceptualization. According to that, MDS is especially good at dealing with pairwise
distances judgements from a subject’s perception, to create a more economic represent-
ation for phenonemal CSs [18, p. 221]. Derrac & Schockaert [1] did not create the space
from sensory data but from text corpora, where the distance of two texts can be meas-
ured by the words they share. Their algorithm reasonably combines the idea to generate
CSs with the steps for a classical NLP pipeline as described by [41] (Section 2.5.1) Given
that, the core contribution of [1] mainly lies in the idea that the faithfulness of a poten-
tial direction for the resulting semantic space can be assessed by the performance of the
corresponding decision problem.

Measuring the Faithfulness of directions It seems reasonable that this assumption
holds for the datasets originally considered by Derrac & Schockaert [1]. As extensively
discussed, when concatenating reviews of movies or tags describing pictures of places it
is natural that words that describe a salient feature of the respective entity occur more
often. The Siddata-dataset consists of short descriptions without this property, where
most words have a relative document-freqeuncy of less than a percent. However, the
technique of comparing the ranking induced by the classification with the score of the
words still yielded enough results, and the directions seem to consist of interpretable
properties. This surprisingly confirmed the robustness of the algorithm in that regard.

Requiring MDS

Derrac & Schockaert [1] explicitly state that MDS is the best dimensionality reduction
technique for their algorithm, as it is one of the few ones that result in a metric space. In
their paper, they describe SVD (the mathematical algorithm behind LSA) as a popular
technique for dimensionality reduction, but further state that “SVD produces a represent-
ation in which entities correspond to vectors, which should be compared in terms of cosine
similarity rather than Euclidean distance. [...] However, we can expect that spatial rela-
tions such as betweenness and parallelism [...] are not meaningful in the representations
derived from SVD” [1, p. 14]. These relationships are required for semantic classifiers
which mimic analogical and betweeness-based reasoning, which they demonstrate to work
for all of their domains. However, this space does not have semantic directions. The final
feature-based representation of the entities is reached by ranking each entity for each
of the feature directions and creating new vectors from these ranks. As acknowledged
by Derrac & Schockaert [1, p. 22], the feature vectors are not orthogonal, not linearly
independent and only of ordinal scale level, withhout meaningful distances. Derrac &
Schockaert [1] create semantic classifiers both for the intermediate space with meaningful

83 5.2. General Algorithm

distances (geometric betweeness- or parallelism-based classifiers) as well as for feature-
based representation (a-fortiori-classifiers, see Section 2.3.2). However, Ager et al. [2] and
Alshaikh et al. [3] are only interested in the latter space and its resulting feature axes. If
that is the case however, it becomes irrelevant if the intermediate space is metric or not,
which enables for other algorithms to be used in that step. As stated in Section 2.5.1,
LSA may be the better choice as it explicitly detects latent topics in descriptions instead
of relying on words that are explicitly mentioned. This may also lead to other desirable
properties such as comparability of documents and phrases.

If for the explainable classifiers the relevant space is the one with semantic directions,
geometric properties of the intermediate space are irrelevant. Instead one should try to
generate a space that has both a useful metric and interpretable directions. Depending
on what the authors consider to be the end result of their algorithm, only one of these
necessary requirements for conceptual spaces is fulfilled. So if their end-result is the
intermediate space, that is nothing more than a normal VSM with some interesting but
long-term useless geometric properties. Instead, another possibility may be to calculating
a new orthonormal basis on the coordinate system. The next step would then be to
enforce orthogonality of the semantic directions as good as possible, and using linear
algebra for a change of basis for the entites, such that not only their ranks but their
exact position for each semantic direction (axis) is relevant. Subsequently, one could
use techniques like Principal Component Analysis to decorrelate the directions. In this
way, one would obtain vector without a name, which however could again be found with
techniques that rely on cosine distances such as LSA.

Ager et al. [2] and Alshaikh et al. [3] both do not this interim space and only use re-
embedded one, but retain the use of MDS regardless. To our best understanding, they
have no reason to do so, giving impression that they read to use MDS in Gärdenfors’
book and then forgot that their final re-embedding step makes that irrelevant.

Using classical techniques In fairness, [2, 3] both experiment with modern neural
embeddings for the entities such as averaged Word2Vec or Doc2Vec. Both authors report
that this decreased performance (see Table C.2) compared to their MDS-condition.11

However, while they use neural embeddings, they do not adjust any of the later steps
to regard for that: they just replaced the VSM generated classically in the first steps of
the algorithm with a neural embedding, such as averaged GloVe embeddings [50] of the
words in the text. On that they ran the exact original algorithm of creating a frequency
matrix from the BoW and using a linear classifier to get the direction.

They do not consider looking for latent topics or make use of the algebraic properties
that are given for these embeddings (see Equation 1.1). A possible avenue could be to
look for shared vector components of entity-embeddings and candidate-word-embeddings.
Instead, they still rely on the usage of linear classifiers that split according to frequency
matrices. We will look more detailed into that soon, but this makes much more sense for
points in Euclidean spaces than it does for vector embeddings where the space is built
up from a cosine-distance-similarity-based objectives (see Section 2.5.1). Instead of that,

11Even though Alshaikh et al. [3] state in their paper that relying on better embeddings such as BERT
[15] may lead to better results.

5. Discussion and Conclusion 84

it seems the better idea to take advantage of dealing with vectors, such as the fact that
they are inherently directional already. As discussed in Section 2.5.1, it seems that the
concepts of LSI to compare the similarity of documents and candidate feature directions
seems more appropriate. This has added benefit that not only words literally occuring in
the respective texts can be considered, which among others counters the previously stated
problem that the used classifiers deal with heavy class imbalance as well accounting for
polysemy and synonymy.

5.2.2. Does the algorithm actually produce a Conceptual Space?

Section 2.3 explained what a conceptual space is, before introducing Derrac & Schock-
aert’s [1] algorithm to automatically induce them. However, their algorithm only ap-
proximates CSs and does model some parts of the definition. A first difficulty with the
algortihm is, that it needs a clearly defined domain from the start. It takes a corpus of
texts and embeds each of these into a single high-dimensional vector space. If not all
texts in the corpus are from a single domain, due to the similarity-based vector space
generation, outliers will greatly affect the embedding of all entities (as [2] discusses at
length). This sounds irrelevant in practice, but the problem is that it is impossible to
clearly define what a domain is. There is the set of place types, but this domain consists
of various subdomains, and some concepts apply only to a specific subset of entities. The
described algorithm cannot figure out such subdomains. This issue is partially addressed
by the works of Alshaikh et al. [3, 35, 36] which elaborate on the idea of subdomains.
As they state, “When representing a particular entity in a conceptual space, we need to
specify which domains it belongs to, and for each of these domains we need to provide a
corresponding vector.” [3]12

Also it is important to be aware of the difference between what [1–3] and this work
consider a domain (the set of movies, places or courses), and the definition of domain as
used by Gärdenfors [18]. According to the latter, a domain is a low-dimensional set of
correlated properties, such as the color domain consisting of hue, saturation and value.
This also points out another difference of the original CS definition and the definition used
here: Conceptual spaces describe an entity through several uncorrelated low-dimensional
vector spaces, not a single one with several dozen dimensions. As [2] puts it more humbly,
“The idea of learning semantic spaces with accurate feature directions can be seen as a
first step towards methods for learning conceptual space representations from data [...]”.
Again it is referred to the works of Alshaikh et al. [3, 35, 36] which alleviate this by
iteratively finding disentangled low-dimensional feature spaces.

As discussed earlier, the algorithm of Derrac & Schockaert [1] first embeds the entities
into a Euclidean space where the concepts of betweeness and parallelism make sense,
and subsequently create a feature-based representation that bases on an entity’s rank
w. r. t. several human-interpretable features. The final embedding is only of ordinal scale
level and thus unable to model degrees of similarities. In other words, the algorithm

12Their improvement to the work of Derrac & Schockaert [1] is many to introduce the concept of sub-
concepts to the algorithm by hierarchically disentangling the generated space into subfeatures that only
exist if certain top-level features are given, such as encoding the political orientation of Organizations
only for those have a high degree of being political in general.

85 5.2. General Algorithm

produces either a space with a euclidean metric, or one with interpretable directions, but
no space that has both properties. As both are necessary conditions for a conceptual space,
Derrac & Schockaert’s [1] algorithm at no point generates something that resembles a
CS. It remains unclear to us why they only consider the ranking of the entites regarding
the feature axis instead of their distance which may retain relations of distances, for
example by applying an arithmatic change of basis for the coordinate system (linear
transformation). The way their algorithm works, the final space only has ordinal scale
level and linearly dependent (correlated) dimensions. An interesting research avenue is to
figure out what properites the space they have, and if small changes to the final algorithm
step (such as PCA to decorrelate dimensions or not only taking the rank) could help in
retaining the euclidean or at least another usable metric.

Points instead of Regions

Another important difference between the resulting space and CSs is that we are dealing
with points instead of regions. Advantages of doing that include that it allows to dis-
tinguish protypical examples from borderline cases [18] and straight-forward application
of ontological relations through the RCC (see Section 2.3.2). Derrac & Schockaert [1],
however, drop this assumption and work with vectors instead of regions, claiming that
this is a “coarse-grained approximations of conceptual spaces, where points correspond
to fine-grained categories instead of specific instances, while convex regions are used to
model higher-level categories” [1, p. 8]. Despite that, they never address it again, so in
the end they stick with points. This breaks with one of the key concepts from CSs and
also renders it impossible to simulate any of the ontological relations with the resulting
spaces, which Gärdenfors considered their most relevant practical application [23].

However, when elaborating on the idea that conceptual spaces can be induced using
Kohonen-Nets (Subsection 2.4), Gärdenfors himself claims that mapping regions of the
original space to point-embeddings in the CS is an advantage, because it resembles gen-
eralization. Another aspect to consider is whether the entities as considered by [1–3]
actually resemble what Gärdenfors originally considered an entity. The entities in the
used datasets of educational resources, placetypes or movies actually are specific instances
instead of general concepts. Instances in a conceptual space are correctly modelled as
points - one could say that regions denote types, with the individual points corresponding
to their tokens. Considering that we have only one instance per entity, we are dealing
with types. Concepts (Regions in a CS) could accordingly be induced as the set of
multiple tokens. A practical implementation could, for example, model the concept of
introductory computer science courses as a convex region spanned by all of the instances it
contains. Erk [56] propose an algorithm that creates such a region with varying variances
per dimension from a set of prototypical instances. It should be noted, however, that
learning boundaries for such regions requires much more data [1] and the aforementioned
reasoning on regions is computationally very complex [57].

Vectors or Points The authors explicitly claim that they are dealing with points in
a Euclidean space, which should be compared in terms of Euclidean distance [1, p. 14]
instead of cosine distance. Despite this, in the merge-canidates step of their algorithm

5. Discussion and Conclusion 86

(Section 3.2.1), they compare the candidate feature directions using the cosine distance
of their orthogonals. As they require similarity of directions and not of positions, this
approach seems plausible. However, these vectors do not have their origin in the co-
ordinate base but in the position where they cut across the SVM’s decision surface: A
SVM is described by the vector of its orthogonal intercept, a scalar describing where the
decision hyperplane crosses it. This means that one is dealing with affine frames (which
are described by basis and origin) instead of vector spaces. However, vectors in affine
spaces cannot be compared solely by the angle between them13. The way their algorithm
is described, their merging of feature direction disregards the origin. Consider the follow-
ing example: The SVMs for two candidates have exactly the same orthogonal vector, but
different intercepts. There might be samples between the two decision surfaces, which
are classified towards the positive class by the one classifier, and towards the negative
by the other. If they classify samples differently, they must express different concepts.
When only accounting for the direction of the orthogonal, such information gets lost.

5.2.3. Outlook

There are also techniques that extend the algorithm of Derrac & Schockaert [1]: Alshaikh
et al. [35] take a vector space embedding and decompose it to several low-dimensional
spaces, such that it corresponds more closely to the definition of a CS which are split
into multiple domain-specific spaces of low dimension. For that, they take the spaces
from [1] to then cluster their features by domain and iteratively remove these groups to
create multiple subspaces, while ensuring that Word2Vec embeddings close to those of
the removed ones are disregarded for future features.

Alshaikh et al. [36] want to get rid of MDS with its quadratic space complexity and also
write a completely new, unsupervised ANN algorithm based on GloVe embeddings [50].
In it, they learn domain-specific embeddings from the BoW and like [1] use classification,
splitting entities that contain one of the verbatim candidates vs. those that do not. They
train an ANN on this while also punishing close embeddings, similar to their previous
work [35].

5.3. Architecture
As one of the thesis goals asked for a good and scalable architecture, we will also evaluate
whether the implementation fulfills the set criteria (Section 1.3.1) and if the aspects we
considered for a qualitative software and sustainable data analysis (Section 2.1.2) are
fulfilled.

First of all, we wanted to show that this implementation works and is able to replicate the
results of one dataset of [1–3]. This aim was reached, indicating Functional Suitability
of our implementation and also the Reproducibility of the original algorithm.14

13For better comprehension it is referred a StackOverflow question of the author of this thesis at
https://stackoverflow.com/a/69407977/5122790

14If our implementation itself is reproducible can hardly be shown by the author of this thesis in this
thesis.

https://stackoverflow.com/a/69407977/5122790

87 5.4. Future Work

Another goal was that the code-base successfully runs on the IKW compute grid. This
goal was also met, and the resulting implementation and its Automation and Scalabil-
ity proves satisfactory. Testing new hyperparameters is as easy as changing a YAML-file,
transferring the file to the grid and executing a command15. The maximum number of
cores per node and of nodes available to a user (64) are maximally utilized, which also
indicates optimal dependency resolution. Running the algorithm on sample datasets
worked without any complications in a matter of minutes (Modularity, Maintainab-
ility, Adaptability).

Allowing for all this was surprisingly intricate. Having worked with Snakemake on
clusters before, the amount of customization to allow for workflow management on the
IKW grid was surprisingly high. This was partially due to heavy iterative restructuring
of the code-base to comply with the logic as demanded by this workflow management
system. Part of this is due to peculiarities of its configuration,16 but also to a huge
degree due to the walltime-limit of 90 minutes. Because of this, most of the algorithm
components need to be written in a way such that they both massiveley parallelize, but
also gracefully end and store interim results, and the scheduler must comply with this.
Comparing this with the uploaded implementation of [3]17, which consists of one Jupyter
Notebook and one Python file, gives indication of the amount of work necessary to reach
this. We sincereley hope that this thesis helps in Transparency and that at least the
cluster execution will be re-used by other students of the IKW.

All the analyses that were conducted for this thesis are given in the accompaning source
code. All plots and tables from all previous sections that were not reprinted were created
in publicly available Jupyter-Notebooks, together with many more analyses that were
conducted but would go far beyond the scope of this thesis. All plots and tables are
explicitly linked and easily re-creatable and runnable. A lot of work was put into the
architecture, and as soon as architechture and worklow management worked as inten-
ded, further development on the algorithm was suprisingly quick. This indicates that
the general aim of creating an architecture that helps to answer related future research
questions is fulfilled. For the sake of brevity, this analysis and the code-base itself, which
is available at https://github.com/cstenkamp/derive_conceptualspaces shall suffice
as explanation regarding the final two set goals.

5.4. Future Work

While this work has shown that the general technique seems to work, so far it has not
produced an actual recommender for edcucational resources. Accordingly, building an
interface as e. g. the one from Figure 1.1, or alternatively a textual interface that relies on
a dialogue with a user to generate recommendations is an important direction for future
work. When this is added to the Siddata-DSA, this may directly be combined with a
study in which the users volunteer information about the usefulness of recommendation

15such as MA_ENV_FILE=siddata.env submit by_config --configfile config/CONFIGFILE.yml
16For example that accounting files that keep track of jobs are inaccessible to users, which means that

our scheduler needs to simulate their behaviour.
17https://github.com/rana-alshaikh/Hierarchical_Linear_Disentanglement

https://github.com/cstenkamp/derive_conceptualspaces
https://github.com/rana-alshaikh/Hierarchical_Linear_Disentanglement

5. Discussion and Conclusion 88

or even providing possible labels, which may be used for algorithm evalution with labels
other then the faculty, or even supervised training as done e. g. by [16]. Also, more
analyses can be performed on the current data, such as correlating distances in the
semantic space with Levensthein-distances in textual descriptions, or looking in what
direction individual faculties differ.

Algorithm Addendums
As stated many times by now, the algorithm that was replicated in this work is very
modular and requires only certain types of algorithm for many of its components. While
recreating the works of [1–3], many smaller and larger changes to the algorithm could
have been performed. A complete list of considered algorithm-extensions can be found
in this repository18. Among others, not all extensions from [2, 3] have been implemented
yet. It may also be insteresting to consider new distance-measures for the entities such
as variations of the Levensthein-distance or the Jaccard-distance (e. g. IoU, as done in
[25]). Also, more work is needed to remove irrelevant dimensions, in the hope of making
the algorithm more robust. Especially the clustering and merging of similar features
may benefit from considering other techniques. These include using IoU similar to [35]
as similarity measure, methods to remove uninformative clusters, or considering other
algorithms for clustering and calculating the centroid directions that weight or threshold
based on classifier performance or similarity. Finally, finding a representative cluster
name may benefit in robustness from also considering pseudo-documents [16] or other
methods, e. g. those suggested by Carmel et al. [54].

Complex Changes
Besides the aforementioned additions, there are also many avenues that change more of
the algorithm’s logic. These include the fine-tuning step of Ager et al. [2], which may be
combined with latent topic detection techniques to alleviate the fact that the desriptions
of the Siddata-dataset are short and omit many words that may serve to describe an
entity. Many other ways to find latent topics may also be considered, such as relying on
semantic databases and counting hyponyms of candidate directions towards their count
for a description, or again relying on vector similarity as demonstrated in LSA and also
neural embeddings such as Word2Vec and Doc2Vec. We have established that the current
form of the algorithm only yields either a space with a Euclidean metric or one with
semantic directions. Finding ways to get both would be an important contribution - it is
e. g. unclear why so far only rankings have been considered instead of linear algebra to find
a new coordinate base. Alternatively, one can ignore the requirement of the Euclidean
metric completely, which opens up many major changes to the algorithm such as not
relying on BoW-representations at all, but instead using modern document embeddings
such as BERT, where candidates are detected using the cosine distance.

18https://github.com/cstenkamp/MastersThesisText/blob/master/pandoc_markdown_base/
futurework_long.md

https://github.com/cstenkamp/MastersThesisText/blob/master/pandoc_markdown_base/futurework_long.md
https://github.com/cstenkamp/MastersThesisText/blob/master/pandoc_markdown_base/futurework_long.md

89 5.5. Conclusion

New Algorithm

Finally, let us try to combine all the issues raised in this work to form a suggestion
of how a completely different algorithm may look. First, we want an embedding that
retains as much of the original dataset variability as possible. For that, additionally to a
small set of absolutely most important dimensions found as the orthogonal of the linear
classifiers, one may consider subsequently running PCA19 to find remaining variance
for those dimensions that do not obviously correspond to the occurance of single words.
This has the additional benefit of finding orthogonal directions which helps to get low-
dimensional spaces, expressed by a small amount of uncorrelated features. So far, the
directions found by PCA do not have a name, but we have also examined ways such as
LSA that find words by their similarity of angles. In fact, it may be possible to build the
whole algorithm on the basis of PCA: Instead of relying on BoW-representations, texts
could be embedded using e. g. BERT, which also takes into account its hidden topics and
word ordering. Subsequently, one may run PCA to find a few directions of this space that
best explain the dataset variance. Embracing the fact that one is dealing with vectors,
LSA can then be used to find candidate dimension names which do not rely on exact
phrasing of the corpus. A disadvantage of such an algorithm is, that the resulting space
is not metric20 - but neither is the space yielded by the algorithm explored in this thesis.

5.5. Conclusion

This thesis explored how explainable generation of educational resources can be generated
in a data-driven manner from a corpus of their descriptions. It has been established that
Conceptual Spaces can serve as knowledge representation method for that by capturing
dataset properties in a way that allows to computationally model explainable reasoning.
To generate these automatically, the method by [1] was thoroughly examined in theory
and in practice.

The introduced algorithm was successfully replicated and the results on the originally
used data have been confirmed. We have sucessfully transferred the algorithm to the
domain of educational resources and demonstrated its ability to find relevant human
concepts in our dataset. By means of this, we have demonstrated the robustness of
the methodology by discussing the difference in the datasets as well as the respective
results. Some adjustments to the original algorithm have been shown to further increase
its performance. Analysis on the results of our dataset has shown that surrogate metrics
indicate that the algorithm finds some regularities in the dataset, such as a courses’
faculty. Despite this, more work to thoroughly test the algorithm’s capabilities, but also
to increase its performance and robustness will be needed.

To make the replication and application of the algorithm possible, we have implemented a
tool that allows to easily recreate the results of [1–3]. This tool was built while ensuring
to comply with code quality standards and proper methodology, is open-sourced and

19PCA is a technique used for dimensionality reduction that works by projecting high-dimensional
data onto its Principal Components, those directions that explain most of its variance.

20Though one may try to use pairwise distances for each of the dimensions to create a new metric
space using a variation of MDS, or rely on Kohonen-Networks for that, as suggested by Gärdenfors [18].

5. Discussion and Conclusion 90

can easily be installed as a package. The result of this is a reliable pipeline that has
been demonstated to be easily adaptapted and extended. We hope this helps raising the
attention of a broader community to the methodology and enables future research on
further varition or domain transfers to be simple, quick and accessible. Another major
contribution of this thesis are the solutions that were found to run workflows similar
to the one required here on compute clusters, specifically the IKW grid. The result is
a workflow that is much more versatile and user-friendly than the ones we know to be
used to date,21 and we hope that it helps to make high performance computing more
attractive to other UOS students. All analyses conducted in this work are open-sourced
as well and can be easily inspected and re-created.

Finally, we have discussed Conceptal Spaces and Derrac & Schockaert’s [1] algorithm
extensively on the basis of our results. We have reached the conclusion that while the
algorithm produces reasonable results automatically and shows much potential, it drops
necessary assumptions of Conceptual Spaces by not producing a single embedding that
is both metric and also has interpretable dimensions. We have concluded that because
of this, some assumptions about necessary design decisions can be dropped, which may
allow to combine the methodology with state-of-the-art algorithms.

21So far, the only methods that we have seen suggested are to write custom shell-scripts, see e. g. the
discussion and links in its respect Stud.IP group at https://studip.uni-osnabrueck.de/plugins.php/
coreforum/index?cid=e946790f6a74e17df02a85847b2110ab (accessed at 9th April 2022)

https://studip.uni-osnabrueck.de/plugins.php/coreforum/index?cid=e946790f6a74e17df02a85847b2110ab
https://studip.uni-osnabrueck.de/plugins.php/coreforum/index?cid=e946790f6a74e17df02a85847b2110ab

91

Glossary

Definitions

Notation Description Page List

accuracy TP+TN
TP+TN+FP+FN 56

cosine dis-
tance

cos(θ) = A·B
∥A∥∥B∥ 3, 21, 25,

42, 45, 83,
85, 86, 88

dissimilarity
matrix

A square matrix where both rows and columns represent entit-
ies, the cells being to their pairwise dissimilarities as calculated
by an arbitrary distance function. For metric distances, distance
matrices are mirrored along their main diagonal, which is made up
solely from zeros. Also called distance matrix.

25, 36, 42

Doc2Vec doc2vec (or Paragraph Vectors) refers to a technique by [14] that
represents a document by a dense vector that is trained to predict
the word occuring in it, analaogous to the training of word2vec. In
contrast to bag-of-words-representations of texts, it considers word
order and semantics of the words, which often leads to substantial
improvements e. g. in classification and information retrieval tasks.
Nowadays, there are many better performance models based on
transformer ANN architectures such as BERT [15] wich base on
similar training techniques but outperform in such tasks.

35, 42, 83,
88

document-
term
matrix

A document-term matrix encodes the frequency of terms (words,
n-grams or other) for a collection of texts in a matrix. The (often
very sparse) matrix has a rows represending the documents and
columns corresponding to terms, the individual values encoding
the pure counts, frequencies or quantifications of all combinations
of document and term.

22, 23, 40,
41

F-1 score 2 ∗ precision∗recall
percision+recall =

TP
TP+ 1

2
(FP+FN)

56

lemma The lemma of a word is the canonical, base form of a set of words
belonging to the same lexeme. Lemmatizing a word refers to the
process of finding this base form for (possibly inflected) words. For
example, the lemma of the words going, went, gone is go.

21, 39

Custom Terms used in this thesis 92

Notation Description Page List

n-gram n-grams are sequences of consecutive words of length n. For ex-
ample, the text "I eat lunch" contains the 1-grams ["I", "eat",
"lunch"], the 2-grams ["I eat", "eat lunch"] and the 3-gram ["I eat
lunch"]. In the scope of this thesis, the term phrase also refers to
n-grams.

21, 22, 34,
36, 39, 41,
44, 73, 102

stop word Stop words are words that are very common to a language and
thus of low discriminative power for differentiating between in-
dividual texts of a corpus. Stop word lists are used as negative
dictionary to remove them before text processing. There are no
universally agreed-upon stop word lists.

38, 103

t-SNE t-SNE is a dimensionality-reduction algorithm often used to visu-
alise high-dimensional data in two or three dimensions. It converts
distances between data point to probabilities and minimizes the
pairwise Kullback-Leibler-divergence between the joint probabilit-
ies of the original data and their respective embeddings.

, 34, 56,
60, 74,
106, 107

Word2Vec word2vec is the most famous of a family of neural language models
[38]. These models are trained on large corpora of texts to predict a
word from its surrounding words or vice versa. Each word is repres-
ented as a vector, and the training ensures that semantically sim-
ilar words end up with similar vector representations. This helps
with many NLP tasks, as it counters problems of synonymy and
polysemy by considering context. The difference between vectors
carry semantic meaning, however unlike conceptual spaces they
are not domain-spefic and embed all natural language words in a
high-dimensional space of arbitrary dimensions.

4, 21, 47,
83, 86, 88

Custom Terms

Unlike the Definitions, this section of the glossary contains terms that used in this thesis
that will have the same meaning throughout the thesis, but are no official definitions of
the term outside of this work.

93 List of Acronyms

Notation Description Page List

entity An entity is a single sample from the handled corpus. Depending
on the context, this term may also refer to its associated text
(which may, depending on the considered dataset, be the course-
description, picture-tags, concatenated-reviews, . . .).

14, 27, 34,
35, 39, 41,
46, 56, 85,
93

feature-
based
represent-
ation

In the context of the given algorithm, the feature-based rep-
resentation of an entity is its representation as a feature-vector,
where each dimension corresponds to a semantic feature and its
value is the entity’s respective rank for that feature.

54, 93

hyperparameterWhen it is referred to hyperparameter in this work, it does not
only refer to scalars like the dimensionality of an embedding, but
also e. g. which specific algorithm is used in a step of the algorithm.

48, 50, 52

quantificiation In the scope of this thesis, the term quantification refers
to the relative score for an n-gram in a document, depending on
its frequency as well as other frequencies, as calculated by one
of the 2. Word-weighting techniques, also called quantification
measures.

20, 22, 40,
42, 44, 46,
65, 72, 80

rank A ranking of a set up numbers refers to their respective index
when ordered-by-value. In this work it refers specifically to the
value of an entity with respect to a semantic direction. Relevant
in the feature-based representation.

41, 47, 54,
61, 93

Acronyms

The abbreviations used throughout the work are compiled in the following list below.
Note that the abbreviations denote the singular form of the abbreviated words. Whenever
the plural forms is needed, an s is added. Thus, for example, whereas ANN abbrevi-
ates artificial neural network, the abbreviation of artificial neural networks is written as
ANNs.

Notation Description Page List

ANN Artificial Neural Network 11

BERT Bidirectional Encoder Representations from Transformers 19
BoW Bag of Words 14

CL Computational Linguistics
CLI Command Line Interface 49

List of Acronyms 94

Notation Description Page List

CS Conceptual Space 11

DAG Directed Acyclic Graph 49
DDC Dewey Decimal Classification 19
df Document Frequency 27
DSA Digital Study Assistant 10
DT Decision Tree

IKW Institut für Kognitionswissenschaften 6
IMDB Internet Movie Database 14
IoU Intercept over Union 88

LDA Latent Dirichlet Allocation (see Subsection 2.4) 57,
LMS Learning Management System 10
LSA Latent Semantic Analysis 23
LSI Latent Semantic Indexing 23

MDS Multi Dimensional Scaling 14
ML Machine Learning 7
MOOC Massive Open Online Course 2

NLP Natural Language Processing 4

OER Open Educational Resource 2
OS Operating System 48,

PCA Principal Component Analysis 85
POS Part-of-Speech 40
PPMI Positive Pointwise Mutual Information 14

RCC Region Connection Calculus 16

SGE Sun Grid Engine 49
SVM Support Vector Machine 15

t-SNE t-distributed Stochastic Neighbor Embedding
tf Term Frequency
tf-idf term frequency × inverse document frequency algorithm 14

UOS University of Osnabrück 30

VSM Vector Space Model 4

95

Appendix
A. Code Use-Cases in Praxis

This appendix lists complete an working commands on how exactly to invoke the pipeline
described in this thesis. There are three main ways to invoke this codebase: Running the
complete pipeline using Snakemake, running individual components for development or
debugging using the CLI of Click, or inspecting results in Jupyter-Notebooks. The
following sections list some examples for all of these use-cases.

A.1. Docker
As the code is both compiled as a python-package as well as a docker-container, it is
possible to invoke all commands listed here for those options as well. For information
on how to install a docker-container it is referred to https://github.com/cstenkamp/
derive_conceptualspaces/blob/main/doc/install_docker.md. To build the docker-
container, use the following command:

docker build -f $MA_CODE_BASE/Dockerfile --build -arg git_commit=$
(git rev -parse --short HEAD) --build -arg uid=$(id -u) --build -
arg gid=$(id -g) --rm --tag derive_conceptualspaces
$MA_CODE_BASE

Afterwards, you can make an alias for the codebase inside a container:

alias run_ma =" docker run -it --rm --user $(id -u):$(id -g) --name
derive_conceptualspaces_cont -v $MA_DATA_DIR :/opt/data --env -

file $MA_ENV_FILE derive_conceptualspaces"

And then call anything from inside the container with e. g.

MA_SNAKEMAKE_TELEGRAM =1 ma_cont snakemake --cores 3 -p --
directory /opt/data default

ma_cont python -m derive_conceptualspace generate -conceptualspace
create -candidate -svm

A.2. Using Click
The click python package is used to generate a command-line interface. The struc-
ture of a command is recursive: command \textrightarrow subcommand \textrightarrow

subsubcommand. This perfectly mirrors the structure of this codebase, as every sub-
command can accept more configurations and accept another nested set of dependencies
(interim results or results from earlier steps) as argument. At any level of subcommand
you can run --help to get a list of available arguments and commands.

Minimal way of calling it: python -m derive_conceptualspace generate-conceptualspace

create-candidate-svm if you have installed the package.

https://github.com/cstenkamp/derive_conceptualspaces/blob/main/doc/install_docker.md
https://github.com/cstenkamp/derive_conceptualspaces/blob/main/doc/install_docker.md

A. Code Use-Cases in Praxis 96

A.2.1. Passing configurations

The algorithm allows for many different parameters or selection of sub-components.
https://github.com/cstenkamp/derive_conceptualspaces/blob/main/derive
_conceptualspace/settings.py contains the default values for the most important
parameters, which can be also set in many different ways. Next to the configurations in
the settings.py file, there are also other configurations that can set when executing this
via click, such as --log selecting python’s log-level. Again, it is encouraged to run any
command with --help to figure out all possible arguments.

This code-base allows several ways to inform about demanded configurations, which are
listed below. Note that this list is ordered by priority of the arguments, so you can
combine all the ways below, where the upper ways to set arguments overwrite the lower
ones, but you will be warned if a setting is overwritten by a higher higher priority.

• With command-line-arguments. Every command specifies a list of allowed command-
line-arguments, such as eg. the command preprocess-descriptions allowing the
--language argument.

• With --env-file: Either by giving a command-line-arg that refers to a .env-file,
or by having the MA_ENV_FILE environment-variable set when executing the code.
The latter way is the fastest way to change settings for all sub-commands in the
development-process: An additional select_env.env file can refer to the actual
env-file. This ensures that the run configurations for all commands are changed
simultaneously and also allows to quickly select a new suite of arguments for indi-
vidual datasets - which automatically selects new parameters for all sub-commands.
See below for the schema of these environment variables.

• With --conf-file, referring to a YAML-file with configurations. Note that this ar-
gument can, again, be an environment variable. Note that when providing sev-
eral alternatives for a configuration, this mode will select one consistent sample
instead of spawning a process for each possible value, which differs from the beha-
viour when calling it with Snakemake. https://github.com/cstenkamp/derive_
conceptualspaces/tree/main/config contains a number of files with parameter-
combinations corresponding to the exact configuration used by any of [1–3].

• With correct env-vars already set: When not overwritten by one of the above ways,
configurations are automatically drawn from environment-variables if the respective
variable exists in the current context. Note that when using environment-varibles,
they must be prepended with MA_: To overwrite the configuration PRIM_LAMBDA, you
would need to set the variable MA_PRIM_LAMBDA.

• From default-values. If no of the above ways was used to overwrite a configuration,
a default-value is used as specified in the settings.py.

If a given command relies on interim results, it must be figured out which of the candid-
ates is selected. To resolve the dependencies, the configurations are resolved as described
above, and the dependency that exactly fulfills the required configuration is selected. If
the dependency itself relied on more configurations, the values for these are added to the
state with maximal priority. If their value is to be overwritten lateron, the codebase fig-
ures out if there are any conflicts and either gracefully fails or informs of their difference.

https://github.com/cstenkamp/derive_conceptualspaces/blob/main/derive_conceptualspace/settings.py
h
t
t
p
s
:
/
/
g
i
t
h
u
b
.
c
o
m
/
c
s
t
e
n
k
a
m
p
/
d
e
r
i
v
e
_
c
o
n
c
e
p
t
u
a
l
s
p
a
c
e
s
/
b
l
o
b
/
m
a
i
n
/
d
e
r
i
v
e
https://github.com/cstenkamp/derive_conceptualspaces/blob/main/derive_conceptualspace/settings.py
_
c
o
n
c
e
p
t
u
a
l
s
p
a
c
e
/
s
e
t
t
i
n
g
s
.
p
y
https://github.com/cstenkamp/derive_conceptualspaces/tree/main/config
https://github.com/cstenkamp/derive_conceptualspaces/tree/main/config

97 A.2. Using Click

The latter may be relevant when for example only requiring DEBUG=True for a later step
of the algorithm.

A.2.2. Sample usage
With this as background, let us give some samples of how the code is invoked. First, let
us look at the respectively used configurations:

Used Configurations

Contents of /path/to/select_env.env:

MA_BASE_DIR=$HOME/path/to/data
MA_CODEPATH=$HOME/path/to/code
MA_CONDAPATH=$HOME/miniconda3
MA_CONDA_ENVNAME=create_cs
MA_CUSTOM_ACCTFILE=$HOME/custom_acctfile.yml
MA_CONFIGDIR ={ MA_CODEPATH }/ config
MA_GRIDCONF ={ MA_CODEPATH }/ workflow/sge/ikw_grid/
MA_ENV_FILE=siddata.env

Note that this file contains mostly paths. Separating these from the actual configura-
tion is useful especially when running the code on different machines, such as a local
machine used for testing plus a high-performance grid or cluster to be deployed to. Us-
ing MA_ENV_FILE, it is referred to the actual environment-file. This can contain settings
specific to individual datasets, such that only this line must be exchanged to inform all
possible commands simultaneously of the configurations required for other datasets.

Contents of /path/to/code/config/siddata.env:

MA_DEBUG =1
MA_DEBUG_N_ITEMS =500
MA_DATASET=siddata2022
MA_MIN_WORDS_PER_DESC =80
MA_LANGUAGE=de
MA_CONF_FILE=derrac2015.yml

This file is used to set configurations that are relevant only to one specific dataset.
Furthermore it links a MA_CONF_FILE, that is used to set configurations that are global in
the sense that they affect the configuration irrespective of the used dataset. The contents
of /path/to/code/config/derrac2015.yml that allow to recreate the configuration of [1]
is listed in Section B.3.1.

Sample Inputs and Outputs

The following examples explicitly export the MA_SELECT_ENV_FILE environment variable,
but keep in mind that the python_dotenv package or you IDE’s Plugin to consider
environment-files are just as valid. The PyCharm-Run-Configurations used in the devel-
opment can be found at https://github.com/cstenkamp/derive_conceptualspaces/
tree/main/.run

https://github.com/cstenkamp/derive_conceptualspaces/tree/main/.run
https://github.com/cstenkamp/derive_conceptualspaces/tree/main/.run

A. Code Use-Cases in Praxis 98

Create dissimilarity-matrix without command-line-arguments:

export $(cat $MA_SELECT_ENV_FILE | xargs)
python -m derive_conceptualspace generate -conceptualspace create -

spaces create -dissim -mat
>> Starting up at 23.03.2022 , 16:13:52
>> Config -File .../ Derive_Conceptualspace/config/

derrac2015_edited.yml loaded.
>> Running with the following settings [3 ef0e2c137]:

CANDIDATE_MIN_TERM_COUNT: 2, CLASSIFIER: SVM ,
CLASSIFIER_SUCCMETRIC: kappa_rank2rank_onlypos_min , DATASET:
siddata2022 , [...]

Extract candidate-terms, enforcing the usage of KeyBERT:

export $(cat $MA_SELECT_ENV_FILE | xargs)
export MA_PP_COMPONENTS=mfauhtcsldp;MA_TRANSLATE_POLICY=onlyorig;

MA_DEBUG =1
python -m derive_conceptualspace prepare -candidateterms --

extraction -method keybert extract -candidateterms --no-faster -
keybert

>> Starting up at 23.03.2022 , 16:35:16
>> Config -File .../ Derive_Conceptualspace/config/

derrac2015_edited.yml loaded.
>> Debug is active! #Items for Debug: 500
>> Using a random seed: 1
>> conf_file demanded config EXTRACTION_METHOD to be tfidf , but

cmd_args overwrites it to keybert
>> The setting DEBUG was False in a dependency and is True here!
>> Running with the following settings [82 fe5f58dd]:

CANDIDATE_MIN_TERM_COUNT: 2, CLASSIFIER: SVM , [...]

A.3. Using Snakemake
This code-base uses Snakemake to allow running the entire pipeline at once. This
can be run directly on a local machine, but also scheduled on e. g. the Sun Grid En-
gine. For that, each base command is specified with some required metadata in the
Snakefile at https://github.com/cstenkamp/derive_conceptualspaces/blob/main/
workflow/Snakefile. Snakemake can be invoked with many arguments to for example
specify the maximal number of cores to consider, specifying the used conda-environment
using --use-conda, or to make Snakemake continue running if a single rule failed us-
ing --keep-going. For all possible arguments, it is referred to https://snakemake.
readthedocs.io/en/stable/executing/cli.html#all-options. Besides these argu-
ments, this codebase provides a large set of to invoke and configure the pipeline.

If this codebase is installed as a package (using pip install), snakemake can be called
exactly as described above. Otherwise, the codebase may not be in your operating
system’s PATH, which means that you may need to set the env-var PYTHONPATH=$(realpath
/path/to/code):$PYTHONPATH. It is also possible to run snakemake from a container, using
a command similar to the one specified above.

https://github.com/cstenkamp/derive_conceptualspaces/blob/main/workflow/Snakefile
https://github.com/cstenkamp/derive_conceptualspaces/blob/main/workflow/Snakefile
https://snakemake.readthedocs.io/en/stable/executing/cli.html#all-options
https://snakemake.readthedocs.io/en/stable/executing/cli.html#all-options

99 A.3. Using Snakemake

A.3.1. Snakemake Use Cases
There are the following ways to invoke the pipeline with Snakemake. Note that to
consider an env-file, you can simply export their values first first:
(export $(cat $MA_SELECT_ENV_FILE | xargs); snakemake --cores 1 -p default).

default e. g. snakemake --cores 1 -p default

Runs a single configuration, namely the default configuration as specified by default-
values or currently active environment variables.

all e. g. snakemake --cores 1 -p all --keep-going

Runs all configurations from the cartisian product of all allowed values for all configs.
Which values are allowed can be specified in the settings.py by replacing the definition
DEFAULT_VARNAME by a collection ALL_VARNAME, as can be inspected here: https://gith
ub.com/cstenkamp/derive_conceptualspaces/blob/main/derive_conceptualspa
ce/settings.py#L32-L40. Note that this is a huge combinatorical explosion and only
recommended with DEBUG=True!

all_for e. g. snakemake --cores 1 -p all_for --config for_rule=create_embedding

Runs the cartesian product of all configuration similarly to all, however only executes
the pipeline up to a specific step, in this example the rule create_embedding.

by_config e. g. snakemake --cores 1 -p by_config --configfile ./config/derrac2015

.yml --keep-going

Is used to run all configurations specified in a config-file. If any of the values of this
configuration-files is a list, all these values will be run individually, allowing to execute
the pipeline for different parameter-combinations simultaneously (note the different be-
haviour when using click). This configuration-file further allows to specify configurations
specific to a dataset, as shown in Section B.3.1.

specific files e. g. snakemake --cores 1 -p --directory $MA_DATA_DIR siddata/debug_True

/fautcsdp_translate_minwords100/embedding_ppmi/dissim_mat.json

The original way how Snakemake-workflows are invoked. This allows to specify only those
configurations that are part of the file-path, resolving configurations and dependencies
by the expected positions in it.

A.3.2. On Grids/HPCs
Additionally to running on a single machine, it is also possible to submit this workflow
to a cluster or grid. There is a lot of code to allow to either schedule this workflow on the
IKW grid, or to just run it manually. To run it manually, you can use the run_manually

script, by e. g. /path/to/code/workflow/sge/run_manually.sh by_config --configfile

/path/to/code/config/derrac2015.yml /path/to/code/workflow/sge.

To schedule the workflow, you first have to install the environment. This can be done by
qsubing the workflow/sge/install_env.sge-file. Afterwards you may execute
MA_SELECT_ENV_FILE=/path/to/code/config/select_env.env /path/to/code/workflow/sge

/submit.sh. The submit-script takes care of forwarding all envirionment variables and
parsing the actual ENV_FILE as specified in the SELECT_ENV_FILE (even allowing to nest
env-vars such as MA_CONFIGDIR={MA_CODEPATH}/config). It further provides arguments to

https://github.com/cstenkamp/derive_conceptualspaces/blob/main/derive_conceptualspace/settings.py#L32-L40
h
t
t
p
s
:
/
/
g
i
t
h
https://github.com/cstenkamp/derive_conceptualspaces/blob/main/derive_conceptualspace/settings.py#L32-L40
u
b
.
c
o
m
/
c
s
t
e
n
k
a
m
p
/
d
e
r
i
v
e
_
c
o
n
c
e
p
t
u
a
l
s
p
a
c
e
s
/
b
l
o
b
/
m
a
i
n
/
d
e
r
i
v
e
_
c
o
n
c
e
p
t
u
a
l
s
p
a
https://github.com/cstenkamp/derive_conceptualspaces/blob/main/derive_conceptualspace/settings.py#L32-L40
c
e
/
s
e
t
t
i
n
g
s
.
p
y
#
L
3
2
-
L
4
0

A. Code Use-Cases in Praxis 100

kill all already running instances (-k), watch the progress after scheduling it (-w), and
to remove all old logs and outputs (-r). A full sample call is for example MA_ENV_FILE

=placetypes.env submit -kwr by_config --configfile config/derrac2015.yml. Intern-
ally, this script calls snakemake -p by_config --configfile <configfile> --directory

$DATAPATH --profile /path/to/workflow/ikw_grid/sge. Configurations specific to the
grid engine are, next to the Snakefile, specified in a cluster.yaml file (https://github
.com/cstenkamp/derive_conceptualspaces/blob/main/workflow/sge/ikw_grid/cl
uster.yaml#L13-L20). This allows to specify the default amount of memory, and also if
there is a wall-time such as for the IKW-Grid. This runtime is considered by restarting
both the scheduler, and also passing it to the individual runners for them to gracefully
shutdown and restart.

More information on scheduling Snakemake is available in the respective repository
(https://github.com/cstenkamp/Snakemake-IKW-SGE-Profile) and the How-To (ht
tps://github.com/cstenkamp/derive_conceptualspaces/blob/main/workflow/sge
/howto.md)

A.4. In Notebooks
Inspecting code in Notebooks requires a different handling of contexts, as there is not
one single context to which new elements are added. Instead, many different contexts are
supposed to be loaded quickly and easily for inspection. This code base provides many
helper-functions to get individual configurations, the best configuration according to a
specifiable metric, or to load many individual configurations at once.

Additionally, many helper functions improve the ease of use for loading configurations
from .env-files and configuration-YAMLS, help in recovering the environment-variables
necessary to load a configuration using click, and much more. A sample call to load all
configurations for a dataset looks like this:

setup_logging ()
load_envfiles (" siddata ")
configs , print_cnf = getfiles_allconfigs (" clusters", verbose=True

)
>> There are 165 different parameter -combis for dataset

siddata2022:
>> {’dataset ’: ’siddata2022 ’,
>> ’language ’: ’de ’,
>> ’debug ’: ’False ’,
>> ’pp_components ’: [’mfauhcsd2 ’, ’mfauhtcsldp ’],
>> [...]
print_envvars(get_filename(configs [0], get_dependencies=False))
>> MA_DATASET=siddata2022;MA_LANGUAGE=de;MA_DEBUG=False;

MA_PP_COMPONENTS=mfauhcsd2 [...]

https://github.com/cstenkamp/derive_conceptualspaces/blob/main/workflow/sge/ikw_grid/cluster.yaml#L13-L20
h
t
t
p
s
:
/
/
g
i
t
h
u
b
https://github.com/cstenkamp/derive_conceptualspaces/blob/main/workflow/sge/ikw_grid/cluster.yaml#L13-L20
.
c
o
m
/
c
s
t
e
n
k
a
m
p
/
d
e
r
i
v
e
_
c
o
n
c
e
p
t
u
a
l
s
p
a
c
e
s
/
b
l
o
b
/
m
a
i
n
/
w
o
r
k
f
l
o
w
/
s
g
e
/
i
k
w
_
g
r
i
d
/
c
l
https://github.com/cstenkamp/derive_conceptualspaces/blob/main/workflow/sge/ikw_grid/cluster.yaml#L13-L20
u
s
t
e
r
.
y
a
m
l
#
L
1
3
-
L
2
0
https://github.com/cstenkamp/Snakemake-IKW-SGE-Profile
https://github.com/cstenkamp/derive_conceptualspaces/blob/main/workflow/sge/howto.md
h
t
https://github.com/cstenkamp/derive_conceptualspaces/blob/main/workflow/sge/howto.md
t
p
s
:
/
/
g
i
t
h
u
b
.
c
o
m
/
c
s
t
e
n
k
a
m
p
/
d
e
r
i
v
e
_
c
o
n
c
e
p
t
u
a
l
s
p
a
c
e
s
/
b
l
o
b
/
m
a
i
n
/
w
o
r
k
f
l
o
w
/
s
g
e
https://github.com/cstenkamp/derive_conceptualspaces/blob/main/workflow/sge/howto.md
/
h
o
w
t
o
.
m
d

101 A.4. In Notebooks

To for example get the interim result featureaxes of all configurations, you may use this:

with WorkerPool(DEFAULT_N_CPUS -3, pgbar=" Fetching featureaxes ..")
as pool:
get_featureaxes = lambda conf: ((ctx := SnakeContext.

loader_context(config=conf , silent=True)).
get_important_settings (), ctx.load(" featureaxes "))

featureaxes_list , interrupted = pool.work(configs ,
get_featureaxes)

The final sample shows how to find and inspect a best-performing parameter-combination
according to a decision-tree, and then running functions on interim results as well as
inspecting old outputs:

setup_logging ()
load_envfiles (" placetypes ")
conf , perf = get_best_conf (" Geonames", verbose=True ,

balance_classes=True , one_vs_rest=True , dt_depth=1,
test_percentage_crossval =0.3, metric ="f1")

ctx = SnakeContext.loader_context(config=conf , silent=False)
pp_descriptions , filtered_dcm = ctx.load(" pp_descriptions", "

filtered_dcm" loaders=dict(pp_descriptions=DescriptionList.
from_json)

ctx.obj[" filtered_dcm "]. show_info(descriptions=ctx1.obj["
pp_descriptions "])

>> [...]
ctx.display_output (" pp_descriptions ")
>> [...]

102

B. Implementation Details

A main goal of this thesis is to provide a code base that makes it as simple as possible to
get started with Derrac & Schockaert’s [1] algorithm to derive rudimentary conceptual
spaces for any kind of dataset. In order to achieve this, documenting some implement-
ation details and design decisions is crucial. This appendix goes into more detail for
selected components of the algorithm.

B.1. Algorithm Implementation Details

Preprocessing
Language-Detection and Translation

To check the languages of the entities, the langdetect 1 library is used, which is a direct
port of a java library that claims to have 99.8% accuracy on longer texts [58].

Depending on the translation-policy, it is possible to either take only those entities of
the demanded language, ignore it and consider all entities in their original language, or
enforce the demanded language by translating all entities from their original language to
the demanded one. The accompaning code for this thesis contains extensive code to do
that using the Google Cloud Translation API 2. Many descriptions of the Siddata-dataset
were translated using this technique3. As of now, Google’s Cloud Translation Service
uses an embedding-based neural model of a hybrid architecture that has a transformer
encoder, followed by an RNN decoder [44]. All of the languages detected in the Siddata-
dataset are supported by the system - translating between the languages German, English
and Spanish, which make up more than 99 percent of the Siddata-descriptions, is what
the system is particularly optimized for.

Candidate Extraction
KeyBERT

The KeyBERT -algorithm4 [53] is one of the techniques used to select phrases of the
text-corpus as candidates for feature-directions.

KeyBERT is a keyword-extraction technique “that leverages BERT embeddings to create
keywords and keyphrases that are most similar to a document”4. BERT is a neural
language representation model that is able to embed both words and documents. Its
embeddings are obtained by training a multi-layer bidirectional transformer encoder ANN
architecture on a task in which a masked word must be predicted from the its bidirectional
context as well subsequent fine-tuning tasks [15]. To extract keywords, the KeyBERT
algorithm embeds both the document as well as its containing n-grams of a configurable

1https://pypi.org/project/langdetect/, Shuyo [58]
2https://cloud.google.com/translate
3As, however, only 500.000 characters per google-account and month can be translated free of charge,

the translation-process for the descriptions is still in progress.
4Grootendorst, M. KeyBERT https://github.com/MaartenGr/KeyBERT. 2021

https://pypi.org/project/langdetect/
https://cloud.google.com/translate
https://cloud.google.com/translate/pricing
https://github.com/MaartenGr/KeyBERT

103 B.1. Algorithm Implementation Details

length using BERT and returns those phrases whose embedding ist most similar to the
document-embedding according to the cosine-similiarity4.

The KeyBERT-model was incorporated to extract key-phrases for this codebase in two
ways:

KeyBERT-original runs the algorithm on the unprocessed original texts. This is reas-
onable, as this is what BERT-embeddings are trained on, however it has the disadvantage
that it requires a lot of post-processing to match the extracted phrases to the processed
descriptions (which e. g. may contain only lemmas or have their stop words removed)

KeyBERT-preprocessed alleviates this problems by running the algorithm on already
preprocessed texts. This may however lead to worse results, as the algorithm was trained
on unprocessed natural sentences.

In practice, though both variants extracted different phrases, the results for either of the
technqiues did not differ significantly.

Candidate Filtering

Figure B.1.: Visual representation of the Hyperplane of a Support-Vector-Machine
splitting a dataset, as well as it’s orthogonal and the orthogonal projection
of a set of samples onto the plane. For an interactive version of this plot,
visit https://nbviewer.org/github/cstenkamp/derive_conceptualspaces/
blob/main/notebooks/text_referenced_plots/hyperplane_orthogonal_3d.
ipynb?flush_cache

https://nbviewer.org/github/cstenkamp/derive_conceptualspaces/blob/main/notebooks/text_referenced_plots/hyperplane_orthogonal_3d.ipynb?flush_cache
https://nbviewer.org/github/cstenkamp/derive_conceptualspaces/blob/main/notebooks/text_referenced_plots/hyperplane_orthogonal_3d.ipynb?flush_cache
https://nbviewer.org/github/cstenkamp/derive_conceptualspaces/blob/main/notebooks/text_referenced_plots/hyperplane_orthogonal_3d.ipynb?flush_cache

B. Implementation Details 104

Long Short Data Quantifications Distances Comments

rank2rank_dense r2r-d all Dense-Ranked Dense-Ranked
rank2rank_min r2r-min all Min-Ranked Dense-Ranked
bin2bin b2b all Binary Binary Disregards rankings

digitized dig all Digitized Digitized 10 bins. Positions decided by np.histogram_bin_edges
from min and max of all data

count2rank_onlypos c2r+ positive Unchanged Dense-Ranked Only for Count as Quantification
rank2rank_onlypos_dense r2r+d positive Dense-Ranked Dense-Ranked
rank2rank_onlypos_min r2r+min positive Min-Ranked Min-Ranked
rank2rank_onlypos_max r2r+max positive Max-Ranked Max-Ranked

digitized_onlypos_1 dig+1 positive Digitized Digitized 10 bins. Positions by np.histogram_bin_edges
from min and max of all data

digitized_onlypos_2 dig+2 positive Digitized Digitized 10 bins. Positions by np.histogram_bin_edges
from min and max of all positive data

Table B.1.: Different values of calculating Cohen’s Kappa score. Dense means: if there
are 14.900 zeros, the next is a 1. Min means: if there are 14.900 zeros, the
next one is a 14.901. Max means: if there are 14.900 zeros, they all get the
label 14.900. These scores are weighted.

B.2. Other Algorithms
B.2.1. Semantic Knowledge Bases
Lexical databases of semantic relations between words, the most famous of which being
WordNet,5 link words in a graph that encodes explicit semantic relations like synonyms
and hyponyms (subtypes/ is-a-relationships). While neural embeddings may encode
similar information implicitly, when relying on dictionary-based word encodings they are
an important tool when using classical linguistic techniques. For the developed algorithm,
the information how many hyponyms of a candidate word for a semantic direction occur
in its corresponding text-corpus can be highly relevant. To do that, WordNet [60] and
it’s German equivalent, GermaNet [61, 62],6 are used in the respective step.

B.2.2. Faculty-Classifier
As one of the evaluations is to compare the results of classifiers based on the algorithm
here with a powerful classification algorithm, a neural network that classifies the fac-
ulty of a course in the Siddata-Dataset was also implemented. The implementation
for that will not be elaborated upon except that it uses Google’s ‘universal-sentence-
encoder-multilingual‘ in Version 3 (linear in textlength, thus managable time and space
requirements) plus a few classification layers ontop. The encoder is trained “on a num-
ber of natural language prediction tasks that require modeling the meaning of word
sequences rather than just individual words”,7 aimed being the base for architectures for
many NLP tasks through the usage of sentence embeddings [43]. It was trained on with
a train-test-split of 90/10 (the results being consitent through sampled cross-validation)

Another purpose of the classifier is to check if it is anyhow possible to extract meaningful
information from the descriptions: If it is possible to train a classifier on the data that

5https://wordnet.princeton.edu/
6https://uni-tuebingen.de/fakultaeten/philosophische-fakultaet/

fachbereiche/neuphilologie/seminar-fuer-sprachwissenschaft/arbeitsbereiche/
allg-sprachwissenschaft-computerlinguistik/ressourcen/lexica/germanet-1/

7Quote from their description at https://tfhub.dev/google/collections/universal-sentence-
encoder/1 (accessed at 25th March 2022)

https://wordnet.princeton.edu/
https://uni-tuebingen.de/fakultaeten/philosophische-fakultaet/fachbereiche/neuphilologie/seminar-fuer-sprachwissenschaft/arbeitsbereiche/allg-sprachwissenschaft-computerlinguistik/ressourcen/lexica/germanet-1/
https://uni-tuebingen.de/fakultaeten/philosophische-fakultaet/fachbereiche/neuphilologie/seminar-fuer-sprachwissenschaft/arbeitsbereiche/allg-sprachwissenschaft-computerlinguistik/ressourcen/lexica/germanet-1/
https://uni-tuebingen.de/fakultaeten/philosophische-fakultaet/fachbereiche/neuphilologie/seminar-fuer-sprachwissenschaft/arbeitsbereiche/allg-sprachwissenschaft-computerlinguistik/ressourcen/lexica/germanet-1/
https://tfhub.dev/google/collections/universal-sentence-encoder/1
h
t
t
p
s
:
/
/
t
f
h
u
b
.
d
e
v
/
g
o
o
g
l
e
/
c
o
l
l
e
c
t
i
o
n
s
/
u
n
i
v
e
r
s
a
l
-
s
e
n
t
e
n
c
e
-
https://tfhub.dev/google/collections/universal-sentence-encoder/1
e
n
c
o
d
e
r
/
1

105 B.3. Configurations to run [1, 2]

can reasonably predict a qualitative feature, there is enough structure in the data such
that the algorithm we are about to produce can work. Also, we have a lower bound for
useful data: we can just throw away data that cannot be classified.

B.3. Configurations to run [1, 2]

B.3.1. Derrac & Schockaert [1]

Listing B.1: YAML for Derrac & Schockaert [1]
pp_components: m f a u t c s d p
quant i f i cat ion_measure : ppmi
dissim_measure : n o rm_ang_d i s t
embed_algo: mds
embed_dimensions: [2 0 , 5 0 , 1 0 0 , 2 0 0]
extraction_method : p p_k e yb e r t
max_ngram: 5
dcm_quant_measure: c o u n t
c l a s s i f i e r : SVM
c l a s s i f i e r_ su c cme t r i c : [k a p p a_c oun t 2 r a n k_on l y p o s ,

k appa_rank2 r ank_on l ypo s_m in]
prim_lambda: 0 . 5
sec_lambda: 0 . 1
__perdataset__:

p lace type s :
extraction_method : a l l
pp_components: n one

B.3.2. Ager et al. [2]
• Logistic regression instead of SVM
• Hyperparameters for metric: Kappa, Accuracy, NDCG
• Ranking is of the PPMI score in the BoW
• N best-scoring candidate features, with either Derrac’s algorithm or k-means
• Centroid of the cluster = Average of the normalized vectors of the words
• Semantic spaces created by either of

• MDS from angular differences of PPMI-weighted BoW
• PCA from angular differences of PPMI-weighted BoW (no quadratic time)
• Doc2Vec [14]
• Averaged pretrained GLoVe of words with df ≥ 2
• Averaged pretrained GLoVe, weighted by PPMI

• ndims of embedding one of 50, 100, 200
• Number of input-dimensions for clustering: 500, 1000, 2000
• Number of clusters {k, 2k} with k being the input-dimensions

106

C. Further Plots and Tables

C.1. t-SNE plots for the data from [1]

t-SNE 2D-Embedding, colored by Geonames

Geonames
unknown
spot,building,farm
stream,lake

road,railroad
parks,area
undersea

mountain,hill,rock
forest,heath

Figure C.1.: 2D visualization of the placetypes-dissimilarity-matrix for the data up-
loaded by Derrac & Schockaert [1], colored by GeoNames. Generated with
t-SNE. See https://github.com/cstenkamp/derive_conceptualspaces/
blob/main/notebooks/text_referenced_plots/desc15_mds_2d3d.ipynb
for the origin of this plot. Individual class frequencies: spot,building,farm:
176 | stream,lake: 74 | mountain,hill,rock: 68 | parks,area: 28 | undersea:
27 | road,railroad: 16 | forest,heath: 14

Note that at https://github.com/cstenkamp/MAAnalysisNotebooks/blob/main/analyze_
results/derrarc2015/mds_derrac2015_moviesplaces_2d3d.ipynb there are also in-
teractive 3D-Versions of these plots. The one for the Siddata-dataset is at https://
github.com/cstenkamp/derive_conceptualspaces/blob/main/notebooks/text_referenced_
plots/visualise_embeddings.ipynb, also 2D and interactive 3D.

https://github.com/cstenkamp/derive_conceptualspaces/blob/main/notebooks/text_referenced_plots/desc15_mds_2d3d.ipynb
https://github.com/cstenkamp/derive_conceptualspaces/blob/main/notebooks/text_referenced_plots/desc15_mds_2d3d.ipynb
https://github.com/cstenkamp/MAAnalysisNotebooks/blob/main/analyze_results/derrarc2015/mds_derrac2015_moviesplaces_2d3d.ipynb
https://github.com/cstenkamp/MAAnalysisNotebooks/blob/main/analyze_results/derrarc2015/mds_derrac2015_moviesplaces_2d3d.ipynb
https://github.com/cstenkamp/derive_conceptualspaces/blob/main/notebooks/text_referenced_plots/visualise_embeddings.ipynb
https://github.com/cstenkamp/derive_conceptualspaces/blob/main/notebooks/text_referenced_plots/visualise_embeddings.ipynb
https://github.com/cstenkamp/derive_conceptualspaces/blob/main/notebooks/text_referenced_plots/visualise_embeddings.ipynb

107 C.2. Dataset samples

t-SNE 2D-Embedding, colored by Genres

Genres
Comedy
Sport
Crime
War
Horror

Thriller
Sci-Fi
Animation
Documentary
Music

Fantasy
Film-Noir
Drama
Mystery
Musical

History
Biography
Adventure
Romance
unknown

Short
Western
Action
Family
Adult

Figure C.2.: 2D visualization of the movies-dissimilarity-matrix for the data uploaded
by Derrac & Schockaert [1], colored by genre. Generated with t-SNE.
See https://github.com/cstenkamp/MAAnalysisNotebooks/blob/main/
analyze_results/derrarc2015/mds_derrac2015_moviesplaces_2d3d.
ipynb for the origin of this plot.

C.2. Dataset samples

Number Course
1.003 Spez. Soz. III: Wahlforschung (Politische Soziologie)
1.003 Erziehung, Bildung und Sozialisation in der modernen Gesellschaft
1.003 Infoveranstaltung Master Soziologie
7.441202 "Fremdheit" in der Kinder- und Jugendliteratur
7.441202 „Mündlichkeit und Schriftlichkeit“

Table C.1.: Sample duplicates in the Siddata-dataset.

https://github.com/cstenkamp/MAAnalysisNotebooks/blob/main/analyze_results/derrarc2015/mds_derrac2015_moviesplaces_2d3d.ipynb
https://github.com/cstenkamp/MAAnalysisNotebooks/blob/main/analyze_results/derrarc2015/mds_derrac2015_moviesplaces_2d3d.ipynb
https://github.com/cstenkamp/MAAnalysisNotebooks/blob/main/analyze_results/derrarc2015/mds_derrac2015_moviesplaces_2d3d.ipynb

C. Further Plots and Tables 108

C.3. Results for Classifiers on placetypes

Alshaikh et al. [3] (MDS) Ager et al. [2] Der. & Sch. [1] This work
Rand. AHC Prim. Sub Ortho FTMDS MDS FTAWV AWV LDA Best Best BL B-all Avg-B A-UnW

Four-
square

D1 0.39 0.36 0.36 0.43 0.45 0.41 0.38 0.39 0.32 0.55 - 0.50 0.45 0.36
D3 0.50 0.46 0.48 0.54 0.57 0.44 0.42 0.42 0.37 0.48 - 0.58 0.5 0.54
DN - 0.41 0.42 0.41 0.31 0.47 0.53 0.53 0.57 0.55 0.54
Any - - 0.73 0.72 - - -

Geo-
names

D1 0.23 0.22 0.24 0.20 0.28 0.32 0.32 0.31 0.28 0.34 - 0.51 0.48 0.49
D3 0.27 0.29 0.27 0.32 0.34 0.31 0.31 0.29 0.28 0.32 - 0.54 0.51 0.29
DN - 0.24 0.21 0.23 0.22 0.27 0.37 0.2 0.46 0.44 0.42
Any - - 0.41 0.36 - - -

Table C.2.: F1-scores of classifiers predicting GeoNames- and Foursquare-labels for three
baselines, [1–3] and this work. (long). Described in detail below.

Table C.2 is a longer version of Table 4.1, reporting F1-Scores of classifiers predicting
GeoNames- and Foursquare-labels for baselines, [1–3] and this work. Cls column encodes
the classifier: D1/3 are DTs of depth 1/3, DN an unbounded DT. Condition Any refers
to the best of all semantic classifiers developed by [1].
First five columns are the exact results reported by [3], next five columns those by
[2], afterwards the best config of [1] and the best baseline-condition of [1]. The exact
conditions of that work are (left to right, top to bottom): C4.5dir, C4.5MDS, Col, 1-
NN (100D), C4.5dir, C4.5MDS, AnalogC, 1-NN (50D). Explanations of the respective
conditions can be found in their work.
All scores are reported with a train-test split of 70% to 30%. Note that the reported
results of [2] are unrepresentive when compared to the other datasets: For the placetypes-
dataset, LDA performs consistently better than their methods, which is not the case for
all other datasets used by them. In the case of [3], the results for the placetypes-dataset
seem to indicate that the Ortho-condition performs consistently better than the Sub-
condition, which was however not the case for any of the other datasets the authors
considered.
Final columns are the results of this work. Column Best-all encodes a different for each
row, specifically the one that yields the best result for the respective classification task,
whereas column Mean-Best refers to the single configuration that achieved the best
results on average. Last column is best when class weighting of per-class-classifiers is
forbidden.

109 C.4. Comparison of different Cluster-Center-Algorithms

C.4. Comparison of different
Cluster-Center-Algorithms

Dimension reclassify main

isawyoufirst beach beach
workspace office
nutrition restaurant deli

goalie stadium footballstadium
pumperbuilding county
starwoodhotels hotelroom pool

interstate10 highway mongolianrestaurant
urban interior movietheater

tuolumne creek nationalforest
cabs downtown

investment school stockexchange
stripmall downtown departmentstore

michiganstateuniversity school campus
ews railroad train

anchored boat pier
a10 airport
wc2 restaurant square

airbase airport airbase
joshuatreenationalpark canyon

clinker building

Table C.3.: Highest-ranking descriptions per dimension for the reclassify-algorithm and
the main-algorithm.

C.5. F1-scores per faculty

Depth 1 2 3 unbound

Sozialwissenschaften 0.386 ± 0.029 0.414 ± 0.031 0.403 ± 0.024 0.580 ± 0.034
Kultur-/Geowissenschaften 0.454 ± 0.023 0.514 ± 0.034 0.591 ± 0.026 0.685 ± 0.020

Erziehungs-/Kulturwissenschaften 0.600 ± 0.019 0.701 ± 0.015 0.713 ± 0.019 0.765 ± 0.015
Physik 0.096 ± 0.019 0.117 ± 0.012 0.145 ± 0.023 0.552 ± 0.072

Biologie/Chemie 0.133 ± 0.019 0.178 ± 0.043 0.247 ± 0.063 0.611 ± 0.084
Mathematik/Informatik 0.215 ± 0.032 0.211 ± 0.046 0.260 ± 0.057 0.542 ± 0.070

Sprach-/Literaturwissenschaften 0.652 ± 0.020 0.685 ± 0.014 0.733 ± 0.014 0.790 ± 0.017
Humanwissenschaften 0.177 ± 0.028 0.245 ± 0.061 0.276 ± 0.078 0.484 ± 0.043

Wirtschaftswissenschaften 0.198 ± 0.022 0.219 ± 0.059 0.236 ± 0.040 0.596 ± 0.084
Rechtswissenschaften 0.617 ± 0.108 0.456 ± 0.037 0.641 ± 0.050 0.841 ± 0.032

Mean (weighted) 0.505 ± 0.026 0.553 ± 0.026 0.597 ± 0.026 0.710 ± 0.026
Mean (unweighted) 0.353 ± 0.032 0.374 ± 0.035 0.424 ± 0.039 0.645 ± 0.047

Table C.4.: Robust F1-scores per faculty of a well-performing configuration. The repor-
ted results are mean and standard deviation from the result of ten runs with
5-fold crossvalidation each.

C. Further Plots and Tables 110

C.6. Sample Classification

Figure C.3.: Sample classification of a level-2 decision tree. Visualise in 3D:
https://github.com/cstenkamp/derive_conceptualspaces/blob/
main/notebooks/text_referenced_plots/display_top3_SIDDATA.ipynb

https://github.com/cstenkamp/derive_conceptualspaces/blob/main/notebooks/text_referenced_plots/display_top3_SIDDATA.ipynb
https://github.com/cstenkamp/derive_conceptualspaces/blob/main/notebooks/text_referenced_plots/display_top3_SIDDATA.ipynb

111 C.7. Hyperparameter search

C.7. Hyperparameter search

Preprocessing
Quanti-
fication #Dims

Doc-Term-
Matrix
Quanti-
fication r2

r-
d

r2
r-

m
in

di
g

r2
r+

d

r2
r+

m
in

r2
r+

m
ax

di
g+

2

c2
r+

m
ea

n

• Sentence-
wise merge

• add titles
• add subtitles
• rm HTML-tags
• lower-case
• rm stopwords
• rm diacritics
• use SK-Learn

count 3 ppmi 0 1 0 145 370 510 191 - 174
tfidf 0 1 0 110 237 278 83 - 101

100 count 0 5 0 0 114 52 290 0 58
ppmi 0 6 27 139 224 247 120 - 109
tfidf 0 6 5 246 270 281 201 - 144

200 count 0 5 1 0 133 52 509 0 88
ppmi 0 6 57 196 315 344 90 - 144
tfidf 0 6 17 357 370 372 433 - 222

ppmi 3 ppmi 0 0 0 192 247 363 136 - 134
tfidf 0 0 0 169 206 217 59 - 93

100 count 0 0 0 0 38 25 242 0 38
ppmi 0 0 0 80 112 101 22 - 45
tfidf 0 0 0 89 90 96 85 - 51

200 count 0 0 0 0 34 21 293 0 44
ppmi 0 1 112 100 163 163 37 - 82
tfidf 0 1 127 99 107 106 131 - 82

tfidf 3 ppmi 0 0 0 229 357 423 84 - 156
tfidf 0 0 0 169 255 258 24 - 101

100 count 0 1 0 0 162 64 450 0 85
ppmi 0 1 3 324 404 423 151 - 187
tfidf 0 1 0 390 422 437 425 - 239

200 count 0 2 0 0 211 83 869 1 146
ppmi 0 2 13 395 559 577 153 - 243
tfidf 0 2 0 531 554 572 794 - 350

• Sentence-
wise merge

• add titles
• add subtitles
• rm HTML-tags
• Sentence-

tokenisation
• lower-case
• rm stopwords
• Lemmatize
• rm diacritics
• rm punctuation

count 3 ppmi 0 1 0 226 319 317 208 - 153
tfidf 0 1 0 210 214 215 82 - 103

100 count 0 7 0 0 118 61 230 0 52
ppmi 0 8 27 184 256 262 125 - 123
tfidf 0 8 5 253 255 255 168 - 135

200 count 0 8 0 0 117 64 290 0 60
ppmi 0 11 41 200 319 325 88 - 141
tfidf 0 11 8 331 333 333 302 - 188

ppmi 3 ppmi 0 0 0 138 310 321 254 - 146
tfidf 0 0 0 143 148 150 187 - 90

100 count 0 0 0 0 29 11 186 0 28
ppmi 0 1 0 117 142 142 20 - 60
tfidf 0 1 0 122 124 124 103 - 68

200 count 0 1 0 0 25 10 272 0 38
ppmi 0 1 48 126 161 165 28 - 76
tfidf 0 1 17 143 144 148 133 - 84

tfidf 3 ppmi 0 0 0 146 219 223 133 - 103
tfidf 0 0 0 108 111 109 38 - 52

100 count 0 1 0 0 160 54 389 0 76
ppmi 0 2 9 281 375 380 205 - 179
tfidf 0 2 0 373 377 392 339 - 212

200 count 0 3 0 0 199 64 661 0 116
ppmi 0 3 21 362 456 472 164 - 211
tfidf 0 3 1 499 498 501 645 - 307

Table C.5.: Amount of candidates extracted for different parameter-combinations and
kappa-scoring-methods. The meaning of the columns is listed in Table B.1.
Cells encode the number of terms that exceeded a threshold of 0.5.

112

D. Algorithm as Pseudo-Code

def create_conceptual_space(entities):
entities = preprocess(entities)
dtm = create_dtm(entities)
candidates = dtm.get_words(min_df =25)
embeddings = mds(dtm)
good_phrases = []
for phrase in candidates:

target = [doc.count(phrase) > 0 for doc in dtm]
svm.fit(embeddings , target)
if compare(svm , dtm) > threshold:

good_phrases.add(svm)
clusters = cluster_phrases(svm)
clusters = postprocess(clusters)
return cs_embedding(entities , clusters)

def preprocess(entities , options):
for entity in entities:

depending on options:
entity.prepend_title ()
entity.lemmatize ()
...
entity.create_bow ()

return entities

def compare(svm , dtm):
distances = [svm.distance_to_hyperplane(doc) for doc in dtm]
counts = [doc.quantification(phrase) 0 for doc in dtm]
return kappa_score(rank(distances), rank(counts))

def cluster_phrases(svm):
...

def cs_embedding(entities , clusters):
new_embed = [cluster.distance(entity)

for cluster in clusters
for entity in entities]

new_embed = rank(new_embed)
return new_embed

113

Bibliography
1. Derrac, J. & Schockaert, S. Inducing semantic relations from conceptual spaces: a

data-driven approach to plausible reasoning tech. rep. (2015).

2. Ager, T., Kuželka, O. & Schockaert, S. Modelling salient features as directions in
fine-tuned semantic spaces in CoNLL 2018 - 22nd Conference on Computational
Natural Language Learning, Proceedings (Association for Computational Linguist-
ics, Stroudsburg, PA, USA, 2018), 530–540. doi:10.18653/v1/k18-1051.

3. Alshaikh, R., Bouraoui, Z. & Schockaert, S. Hierarchical linear disentanglement of
data-driven conceptual spaces in IJCAI International Joint Conference on Artificial
Intelligence (2020), 3573–3579. doi:10.24963/ijcai.2020/494.

4. Schröder, M. Studienwahl unter den Folgen einer radikalen Differenzierung 224
(Klinkhardt, Bad Heilbrunn, 2015).

5. Atenas, J., Havemann, L. & Priego, E. Opening teaching landscapes: The import-
ance of quality assurance in the delivery of open educational resources. Open Praxis
6. doi:10.5944/OPENPRAXIS.6.1.81 (2014).

6. Olcott, D. OER perspectives: Emerging issues for universities. Distance Education
33, 283–290. doi:10.1080/01587919.2012.700561 (2012).

7. Ehlers, U.-D. & Kellermann, S. A. Future Skills - The Future of Learning and
Higher education. Results of the International Future Skills Delphi Survey https:
//nextskills.org/wp-content/uploads/2020/04/2019-02-23-key-findings-
future-skills-report1.pdf. Karlsruhe, 2019.

8. Schurz, K. et al. TOWARDS A USER FOCUSED DEVELOPMENT OF A DI-
GITAL STUDY ASSISTANT THROUGH A MIXED METHODS DESIGN in 18th
International Conference on Cognition and Exploratory Learning in Digital Age,
CELDA 2021 (2021), 45–52. doi:10.33965/celda2021_202108l006.

9. Sarwar, B., Karypis, G., Konstan, J. & Riedl, J. Analysis of Recommendation Al-
gorithms for E-Commerce (2000).

10. Linden, G., Smith, B. & York, J. Amazon.com recommendations: Item-to-item col-
laborative filtering. IEEE Internet Computing 7, 76–80. doi:10.1109/MIC.2003.
1167344 (2003).

11. Smith, B. & Linden, G. Two Decades of Recommender Systems at Amazon.com.
IEEE Internet Computing 21, 12–18. doi:10.1109/MIC.2017.72 (2017).

12. Mikolov, T., Yih, W. T. & Zweig, G. Linguistic Regularities in Continuous Space
Word Representations. Proceedings of the 2nd Workshop on Computational Lin-
guistics for Literature, CLfL 2013 at the 2013 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2013, 746–751 (2013).

13. Mikolov, T., Sutskever, I., Chen, K., Corrado, G. & Dean, J. Distributed repres-
entations ofwords and phrases and their compositionality in Advances in Neural In-
formation Processing Systems (Neural information processing systems foundation,
2013). doi:10.48550/arxiv.1310.4546.

14. Le, Q. & Mikolov, T. Distributed representations of sentences and documents in 31st
International Conference on Machine Learning, ICML 2014 4 (2014), 2931–2939.

https://doi.org/10.18653/v1/k18-1051
https://doi.org/10.24963/ijcai.2020/494
https://doi.org/10.5944/OPENPRAXIS.6.1.81
https://doi.org/10.1080/01587919.2012.700561
https://nextskills.org/wp-content/uploads/2020/04/2019-02-23-key-findings-future-skills-report1.pdf
https://nextskills.org/wp-content/uploads/2020/04/2019-02-23-key-findings-future-skills-report1.pdf
https://nextskills.org/wp-content/uploads/2020/04/2019-02-23-key-findings-future-skills-report1.pdf
https://doi.org/10.33965/celda2021_202108l006
https://doi.org/10.1109/MIC.2003.1167344
https://doi.org/10.1109/MIC.2003.1167344
https://doi.org/10.1109/MIC.2017.72
https://doi.org/10.48550/arxiv.1310.4546

114

15. Devlin, J., Chang, M. W., Lee, K. & Toutanova, K. BERT: Pre-training of deep
bidirectional transformers for language understanding. NAACL HLT 2019 - 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies - Proceedings of the Conference 1, 4171–
4186 (2019).

16. Vig, J., Sen, S. & Riedl, J. The tag genome: Encoding community knowledge to
support novel interaction. ACM Transactions on Interactive Intelligent Systems 2.
doi:10.1145/2362394.2362395 (2012).

17. Vig, J. Intelligent tagging interfaces: Beyond folksonomy in UIST 2010 - 23rd ACM
Symposium on User Interface Software and Technology, Adjunct Proceedings (2010),
371–374. doi:10.1145/1866218.1866226.

18. Gärdenfors, P. Conceptual Spaces: The Geometry of Thought 318. doi:10.7551/
mitpress/2076.001.0001 (Bradford Books, 2000).

19. Ai, Q., Azizi, V., Chen, X. & Zhang, Y. Learning Heterogeneous Knowledge Base
Embeddings for Explainable Recommendation. Algorithms 11, 137. doi:10.3390/
a11090137 (2018).

20. Mölder, F. et al. Sustainable data analysis with Snakemake. F1000Research 10, 33.
doi:10.12688/F1000RESEARCH.29032.1 (2021).

21. ISO / IEC 25010 : 2011 Systems and software engineering — Systems and software
Quality Requirements and Evaluation (SQuaRE) — System and software quality
models in (2013).

22. Stockmann, R. & Berg, A. Stud.IP. eleed 1 (2005).

23. Gärdenfors, P. How to make the semantic web more semantic. Formal Ontology in
Information Systems. IOS Press, 17–36 (2004).

24. Fiorini, S., Gärdenfors, P. & Abel, M. Representing part-whole relations in concep-
tual spaces. Cognitive processing 15. doi:10.1007/s10339-013-0585-x (2013).

25. Schockaert, S. & Prade, H. Interpolation and Extrapolation in Conceptual Spaces:
A Case Study in the Music Domain in (2011), 217–231. doi:10.1007/978-3-642-
23580-1_16.

26. Cohn, A. G., Bennett, B., Gooday, J. & Gotts, N. M. Qualitative Spatial Repres-
entation and Reasoning with the Region Connection Calculus. GeoInformatica 1,
275–316. doi:10.1023/A:1009712514511 (1997).

27. Gärdenfors, P. & Williams, M. A. Reasoning about categories in conceptual spaces.
IJCAI International Joint Conference on Artificial Intelligence, 385–392 (2001).

28. Dayan, P., Hinton, G. E., Neal, R. M. & Zemel, R. S. The Helmholtz Machine.
Neural Computation 7, 889–904. doi:10.1162/neco.1995.7.5.889 (1995).

29. Goodfellow, I. et al. Generative Adversarial Nets in Advances in Neural Information
Processing Systems (eds Ghahramani, Z, Welling, M, Cortes, C, Lawrence, N &
Weinberger, K. Q.) 27 (Curran Associates, Inc., 2014).

30. Kingma, D. P. & Welling, M. Auto-Encoding Variational Bayes. 2nd International
Conference on Learning Representations, ICLR 2014 - Conference Track Proceed-
ings. doi:10.48550/arxiv.1312.6114 (2013).

31. Chen, X. et al. InfoGAN: Interpretable Representation Learning by Information
Maximizing Generative Adversarial Nets. Advances in Neural Information Pro-
cessing Systems, 2180–2188. doi:10.48550/arxiv.1606.03657 (2016).

https://doi.org/10.1145/2362394.2362395
https://doi.org/10.1145/1866218.1866226
https://doi.org/10.7551/mitpress/2076.001.0001
https://doi.org/10.7551/mitpress/2076.001.0001
https://doi.org/10.3390/a11090137
https://doi.org/10.3390/a11090137
https://doi.org/10.12688/F1000RESEARCH.29032.1
https://doi.org/10.1007/s10339-013-0585-x
https://doi.org/10.1007/978-3-642-23580-1_16
https://doi.org/10.1007/978-3-642-23580-1_16
https://doi.org/10.1023/A:1009712514511
https://doi.org/10.1162/neco.1995.7.5.889
https://doi.org/10.48550/arxiv.1312.6114
https://doi.org/10.48550/arxiv.1606.03657

115

32. Blei, D. M., Ng, A. Y. & Jordan, M. I. Latent Dirichlet allocation. Journal of
Machine Learning Research 3, 993–1022. doi:10.1016/b978- 0- 12- 411519- 4.
00006-9 (2003).

33. Schrumpf, J., Weber, F. & Thelen, T. A Neural Natural Language Processing System
for Educational Resource Knowledge Domain Classification in DELFI 2021 (eds
Kienle, A., Harrer, A., Haake, J. M. & Lingnau, A.) (Gesellschaft für Informatik
e.V., Bonn, 2021), 283–288.

34. Dewey, M. A Classification And Subject Index for Cataloguing And Arranging the
Books And Pamphlets of a Library. Search, 44 (1876).

35. Alshaikh, R., Bouraoui, Z. & Schockaert, S. Learning conceptual spaces with disen-
tangled facets. Proceedings of the 23rd Conference on Computational Natural Lan-
guage Learning (CoNLL), 131–139. doi:10.18653/v1/k19-1013 (2019).

36. Alshaikh, R., Bouraoui, Z., Jeawak, S. & Schockaert, S. A Mixture-of-Experts Model
for Learning Multi-Facet Entity Embeddings in (Online, 2021), 5124–5135. doi:10.
18653/v1/2020.coling-main.449.

37. Kohonen, T. Exploration of very large databases by self-organizing maps in Proceed-
ings of International Conference on Neural Networks (ICNN’97) 1 (1997), PL1–
PL6 vol.1. doi:10.1109/ICNN.1997.611622.

38. Mikolov, T., Chen, K., Corrado, G. & Dean, J. Efficient estimation of word repres-
entations in vector space. arXiv preprint arXiv:1301.3781 (2013).

39. Lowe, W. Towards a Theory of Semantic Space. Proceedings of the Twenty-Third
Annual Conference of the Cognitive Science Society, 576–581 (2001).

40. Firth, J. R. A synopsis of linguistic theory 1930-55. Studies in Linguistic Analysis
(special volume of the Philological Society) 1952-59, 1–32 (1957).

41. Turney, P. D. & Pantel, P. From Frequency to Meaning: Vector Space Models of
Semantics. Journal of Artificial Intelligence Research 37, 141–188 (2010).

42. Bird, S., Klein, E. & Loper, E. Natural language processing with Python: analyzing
text with the natural language toolkit (" O’Reilly Media, Inc.", 2009).

43. Guo, M. et al. Effective Parallel Corpus Mining using Bilingual Sentence Embed-
dings in WMT 2018 - 3rd Conference on Machine Translation, Proceedings of the
Conference 1 (2018), 165–176. doi:10.18653/v1/w18-6317.

44. Chen, M. X. et al. The best of both worlds: Combining recent advances in neural
machine translation in ACL 2018 - 56th Annual Meeting of the Association for
Computational Linguistics, Proceedings of the Conference (Long Papers) 1 (2018),
76–86. doi:10.18653/v1/p18-1008.

45. Maas, A. L. et al. Learning Word Vectors for Sentiment Analysis in Proceedings
of the 49th Annual Meeting of the Association for Computational Linguistics: Hu-
man Language Technologies (Association for Computational Linguistics, Portland,
Oregon, USA, 2011), 142–150.

46. Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K. & Harshman, R. In-
dexing by latent semantic analysis. Journal of the American Society for Information
Science 41, 391–407. doi:https://doi.org/10.1002/(SICI)1097-4571(199009)
41:6<391::AID-ASI1>3.0.CO;2-9 (1990).

47. Bullinaria, J. A. & Levy, J. P. Extracting semantic representations from word co-
occurrence statistics: A computational study. Behavior Research Methods 2007 39:3
39, 510–526. doi:10.3758/BF03193020 (2007).

https://doi.org/10.1016/b978-0-12-411519-4.00006-9
https://doi.org/10.1016/b978-0-12-411519-4.00006-9
https://doi.org/10.18653/v1/k19-1013
https://doi.org/10.18653/v1/2020.coling-main.449
https://doi.org/10.18653/v1/2020.coling-main.449
https://doi.org/10.1109/ICNN.1997.611622
https://doi.org/10.18653/v1/w18-6317
https://doi.org/10.18653/v1/p18-1008
https://doi.org/https://doi.org/10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
https://doi.org/https://doi.org/10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
https://doi.org/10.3758/BF03193020

116

48. Mead, A. Review of the Development of Multidimensional Scaling Methods Author
(s): A . Mead Source : Journal of the Royal Statistical Society . Series D (The
Statistician) , 1992 , Vol . Published by : Wiley for the Royal Statistical Society
Stable URL : https. 41, 27–39 (1992).

49. Loper, E. & Bird, S. NLTK : The Natural Language Toolkit in Proceedings of the
ACL-02 Workshop on Effective Tools and Methodologies for Teaching Natural Lan-
guage Processing and Computational Linguistics (Association for Computational
Linguistics, Philadelphia, Pennsylvania, USA, 2002), 63–70. doi:10.3115/1118108.
1118117.

50. Pennington, J., Socher, R. & Manning, C. D. Glove: Global vectors for word rep-
resentation in Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP) (2014), 1532–1543.

51. Nothman, J., Qin, H. & Yurchak, R. Stop Word Lists in Free Open-source Soft-
ware Packages in Proceedings of Workshop for NLP Open Source Software (NLP-
OSS) (Association for Computational Linguistics, Melbourne, Australia, 2018), 7–
12. doi:10.18653/v1/W18-2502.

52. Wartena, C. A probabilistic morphology model for German lemmatization in Pro-
ceedings of the 15th Conference on Natural Language Processing, KONVENS 2019
(2020), 40–49.

53. Grootendorst, M. KeyBERT: Minimal keyword extraction with BERT. https://
doi.org/10.5281/zenodo.4461265. 2020. doi:10.5281/zenodo.4461265.

54. Carmel, D., Roitman, H. & Zwerdling, N. Enhancing cluster labeling using wikipe-
dia. Proceedings - 32nd Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR 2009, 139–146. doi:10.1145/
1571941.1571967 (2009).

55. Breiman, L., Friedman, J., Olshen, R. & Stone, C. Classification and Regression
Trees 1st Editio, 368. doi:https://doi.org/10.1201/9781315139470 (Routledge,
Monterey, California: Wadsworth, 1984).

56. Erk, K. Representing words as regions in vector space. CoNLL 2009 - Proceedings
of the Thirteenth Conference on Computational Natural Language Learning, 57–65.
doi:10.3115/1596374.1596387 (2009).

57. Hernández-Conde, J. A case against convexity in conceptual spaces. Synthese 194.
doi:10.1007/s11229-016-1123-z (2017).

58. Shuyo, N. Language Detection Library for Java http://code.google.com/p/
language-detection/. 2010.

59. Grootendorst, M. KeyBERT https://github.com/MaartenGr/KeyBERT. 2021.

60. Miller, G. A. WordNet: A Lexical Database for English. Communications of the
ACM 38, 39–41. doi:10.1145/219717.219748 (1995).

61. Hamp, B. & Feldweg, H. GermaNet - a Lexical-Semantic Net for German in Auto-
matic Information Extraction and Building of Lexical Semantic Resources for NLP
Applications (1997).

62. Henrich, V. & Hinrichs, E. GernEdiT-The GermaNet Editing Tool in Proceedings
of the Seventh Conference on International Language Resources and Evaluation
(LREC 2010) (Valetta, Malta, 2010), 2228–2235.

https://doi.org/10.3115/1118108.1118117
https://doi.org/10.3115/1118108.1118117
https://doi.org/10.18653/v1/W18-2502
https://doi.org/10.5281/zenodo.4461265
https://doi.org/10.5281/zenodo.4461265
https://doi.org/10.5281/zenodo.4461265
https://doi.org/10.1145/1571941.1571967
https://doi.org/10.1145/1571941.1571967
https://doi.org/https://doi.org/10.1201/9781315139470
https://doi.org/10.3115/1596374.1596387
https://doi.org/10.1007/s11229-016-1123-z
http://code.google.com/p/language-detection/
http://code.google.com/p/language-detection/
https://github.com/MaartenGr/KeyBERT
https://doi.org/10.1145/219717.219748

	Introduction
	Reading Instructions
	Motivation
	Course Recommendation
	The algorithm of Derrac2015

	Research Questions and Thesis Goals
	Success conditions

	Background
	Replication and Software Quality
	Replication and Reproducibility
	Software Quality

	SIDDATA and Educational Resources
	Conceptual Spaces
	Data-Driven Generation of Conceptual Spaces
	Explainable Reasoning with Conceptual Spaces

	Other Related Work
	Relevant Algorithms and Techniques
	Classical Vector Space Construction
	1. Bag-of-ngrams representation
	2. Word-weighting techniques
	3. Dimensionality Reduction and Latent Space Embedding

	Methods
	Datasets
	Siddata-courses
	Placetypes

	Algorithm
	Algorithm Steps
	Preprocessing
	Extract Candidates
	Generating Vector Space Embeddings
	Filter Candidates by Classifier Performance
	Merging the extracted candidate-directions
	Postprocessing the Feature-Directions
	Re-Embedding the entities into the new space

	Architecture
	Implementation
	Modularity
	Workflow Management

	Modes of Execution / Use-Cases
	Conclusion

	Evaluation Metrics
	Proxies hinting at meaningful results
	Scientific Qualitative Analysis

	Results
	Replicating results for the placetypes-dataset
	Dataset differences
	Results for the Siddata-dataset
	Recovering entities from salient directions
	Qualitative Analysis

	Optimal Parameters

	Discussion and Conclusion
	Interpretation and Discussion of results
	Results for Placetypes
	Results for educational resources
	Quantifiable dataset differences
	Classification results
	Dataset Quality
	Qualitative analysis of the extracted dimensions
	Are embeddings of known similar entities close?

	Hyperparameters results
	Did we achieve the thesis goal?

	General Algorithm
	Algorithm idea
	Requiring MDS

	Does the algorithm actually produce a Conceptual Space?
	Outlook

	Architecture
	Future Work
	Conclusion

	Glossary
	List of Definitions
	Custom Terms used in this thesis
	List of Acronyms

	Appendix
	Code Use-Cases in Praxis
	Docker
	Using Click
	Passing configurations
	Sample usage
	Used Configurations
	Sample Inputs and Outputs

	Using Snakemake
	Snakemake Use Cases
	On Grids/HPCs

	In Notebooks

	Implementation Details
	Algorithm Implementation Details
	Other Algorithms
	Semantic Knowledge Bases
	Faculty-Classifier

	Configurations to run Derrac2015, Ager2018
	Derrac2015
	Ager2018

	Further Plots and Tables
	t-SNE plots for the data from Derrac2015
	Dataset samples
	Results for Classifiers on placetypes
	Comparison of different Cluster-Center-Algorithms
	F1-scores per faculty
	Sample Classification
	Hyperparameter search

	Algorithm as Pseudo-Code

	Bibliography

